Remove unnecessary cast for void * pointer. Reviewed-by: Paul B Mahol <onemda@gmail.com> Signed-off-by: Jun Zhao <barryjzhao@tencent.com>
		
			
				
	
	
		
			2928 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2928 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2019 Eugene Lyapustin
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * 360 video conversion filter.
 | 
						|
 * Principle of operation:
 | 
						|
 *
 | 
						|
 * (for each pixel in output frame)
 | 
						|
 * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
 | 
						|
 * 2) Apply 360 operations (rotation, mirror) to (x, y, z)
 | 
						|
 * 3) Calculate pixel position (u, v) in input frame
 | 
						|
 * 4) Calculate interpolation window and weight for each pixel
 | 
						|
 *
 | 
						|
 * (for each frame)
 | 
						|
 * 5) Remap input frame to output frame using precalculated data
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "libavutil/imgutils.h"
 | 
						|
#include "libavutil/pixdesc.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "avfilter.h"
 | 
						|
#include "formats.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "video.h"
 | 
						|
#include "v360.h"
 | 
						|
 | 
						|
typedef struct ThreadData {
 | 
						|
    AVFrame *in;
 | 
						|
    AVFrame *out;
 | 
						|
} ThreadData;
 | 
						|
 | 
						|
#define OFFSET(x) offsetof(V360Context, x)
 | 
						|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
 | 
						|
 | 
						|
static const AVOption v360_options[] = {
 | 
						|
    {     "input", "set input projection",              OFFSET(in), AV_OPT_TYPE_INT,    {.i64=EQUIRECTANGULAR}, 0,    NB_PROJECTIONS-1, FLAGS, "in" },
 | 
						|
    {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
 | 
						|
    {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
 | 
						|
    {      "c3x2", "cubemap 3x2",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_3_2},     0,                   0, FLAGS, "in" },
 | 
						|
    {      "c6x1", "cubemap 6x1",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_6_1},     0,                   0, FLAGS, "in" },
 | 
						|
    {       "eac", "equi-angular cubemap",                       0, AV_OPT_TYPE_CONST,  {.i64=EQUIANGULAR},     0,                   0, FLAGS, "in" },
 | 
						|
    {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "in" },
 | 
						|
    {    "barrel", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
 | 
						|
    {        "fb", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "in" },
 | 
						|
    {      "c1x6", "cubemap 1x6",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_1_6},     0,                   0, FLAGS, "in" },
 | 
						|
    {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "in" },
 | 
						|
    {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "in" },
 | 
						|
    {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "in" },
 | 
						|
    {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "in" },
 | 
						|
    {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "in" },
 | 
						|
    {    "output", "set output projection",            OFFSET(out), AV_OPT_TYPE_INT,    {.i64=CUBEMAP_3_2},     0,    NB_PROJECTIONS-1, FLAGS, "out" },
 | 
						|
    {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
 | 
						|
    {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
 | 
						|
    {      "c3x2", "cubemap 3x2",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_3_2},     0,                   0, FLAGS, "out" },
 | 
						|
    {      "c6x1", "cubemap 6x1",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_6_1},     0,                   0, FLAGS, "out" },
 | 
						|
    {       "eac", "equi-angular cubemap",                       0, AV_OPT_TYPE_CONST,  {.i64=EQUIANGULAR},     0,                   0, FLAGS, "out" },
 | 
						|
    {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "out" },
 | 
						|
    {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | 
						|
    {"rectilinear", "regular video",                             0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | 
						|
    {  "gnomonic", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
 | 
						|
    {    "barrel", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "out" },
 | 
						|
    {        "fb", "barrel facebook's 360 format",               0, AV_OPT_TYPE_CONST,  {.i64=BARREL},          0,                   0, FLAGS, "out" },
 | 
						|
    {      "c1x6", "cubemap 1x6",                                0, AV_OPT_TYPE_CONST,  {.i64=CUBEMAP_1_6},     0,                   0, FLAGS, "out" },
 | 
						|
    {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "out" },
 | 
						|
    {  "mercator", "mercator",                                   0, AV_OPT_TYPE_CONST,  {.i64=MERCATOR},        0,                   0, FLAGS, "out" },
 | 
						|
    {      "ball", "ball",                                       0, AV_OPT_TYPE_CONST,  {.i64=BALL},            0,                   0, FLAGS, "out" },
 | 
						|
    {    "hammer", "hammer",                                     0, AV_OPT_TYPE_CONST,  {.i64=HAMMER},          0,                   0, FLAGS, "out" },
 | 
						|
    {"sinusoidal", "sinusoidal",                                 0, AV_OPT_TYPE_CONST,  {.i64=SINUSOIDAL},      0,                   0, FLAGS, "out" },
 | 
						|
    {    "interp", "set interpolation method",      OFFSET(interp), AV_OPT_TYPE_INT,    {.i64=BILINEAR},        0, NB_INTERP_METHODS-1, FLAGS, "interp" },
 | 
						|
    {      "near", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
 | 
						|
    {   "nearest", "nearest neighbour",                          0, AV_OPT_TYPE_CONST,  {.i64=NEAREST},         0,                   0, FLAGS, "interp" },
 | 
						|
    {      "line", "bilinear interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=BILINEAR},        0,                   0, FLAGS, "interp" },
 | 
						|
    {    "linear", "bilinear interpolation",                     0, AV_OPT_TYPE_CONST,  {.i64=BILINEAR},        0,                   0, FLAGS, "interp" },
 | 
						|
    {      "cube", "bicubic interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=BICUBIC},         0,                   0, FLAGS, "interp" },
 | 
						|
    {     "cubic", "bicubic interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=BICUBIC},         0,                   0, FLAGS, "interp" },
 | 
						|
    {      "lanc", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
 | 
						|
    {   "lanczos", "lanczos interpolation",                      0, AV_OPT_TYPE_CONST,  {.i64=LANCZOS},         0,                   0, FLAGS, "interp" },
 | 
						|
    {         "w", "output width",                   OFFSET(width), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "w"},
 | 
						|
    {         "h", "output height",                 OFFSET(height), AV_OPT_TYPE_INT,    {.i64=0},               0,           INT16_MAX, FLAGS, "h"},
 | 
						|
    { "in_stereo", "input stereo format",        OFFSET(in_stereo), AV_OPT_TYPE_INT,    {.i64=STEREO_2D},       0,    NB_STEREO_FMTS-1, FLAGS, "stereo" },
 | 
						|
    {"out_stereo", "output stereo format",      OFFSET(out_stereo), AV_OPT_TYPE_INT,    {.i64=STEREO_2D},       0,    NB_STEREO_FMTS-1, FLAGS, "stereo" },
 | 
						|
    {        "2d", "2d mono",                                    0, AV_OPT_TYPE_CONST,  {.i64=STEREO_2D},       0,                   0, FLAGS, "stereo" },
 | 
						|
    {       "sbs", "side by side",                               0, AV_OPT_TYPE_CONST,  {.i64=STEREO_SBS},      0,                   0, FLAGS, "stereo" },
 | 
						|
    {        "tb", "top bottom",                                 0, AV_OPT_TYPE_CONST,  {.i64=STEREO_TB},       0,                   0, FLAGS, "stereo" },
 | 
						|
    { "in_forder", "input cubemap face order",   OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"},        0,     NB_DIRECTIONS-1, FLAGS, "in_forder"},
 | 
						|
    {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"},        0,     NB_DIRECTIONS-1, FLAGS, "out_forder"},
 | 
						|
    {   "in_frot", "input cubemap face rotation",  OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "in_frot"},
 | 
						|
    {  "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"},        0,     NB_DIRECTIONS-1, FLAGS, "out_frot"},
 | 
						|
    {    "in_pad", "percent input cubemap pads",    OFFSET(in_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "in_pad"},
 | 
						|
    {   "out_pad", "percent output cubemap pads",  OFFSET(out_pad), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,                 1.f, FLAGS, "out_pad"},
 | 
						|
    {   "fin_pad", "fixed input cubemap pads",     OFFSET(fin_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100, FLAGS, "fin_pad"},
 | 
						|
    {  "fout_pad", "fixed output cubemap pads",   OFFSET(fout_pad), AV_OPT_TYPE_INT,    {.i64=0},               0,                 100, FLAGS, "fout_pad"},
 | 
						|
    {       "yaw", "yaw rotation",                     OFFSET(yaw), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "yaw"},
 | 
						|
    {     "pitch", "pitch rotation",                 OFFSET(pitch), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "pitch"},
 | 
						|
    {      "roll", "roll rotation",                   OFFSET(roll), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "roll"},
 | 
						|
    {    "rorder", "rotation order",                OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"},           0,                   0, FLAGS, "rorder"},
 | 
						|
    {     "h_fov", "horizontal field of view",       OFFSET(h_fov), AV_OPT_TYPE_FLOAT,  {.dbl=90.f},     0.00001f,               360.f, FLAGS, "h_fov"},
 | 
						|
    {     "v_fov", "vertical field of view",         OFFSET(v_fov), AV_OPT_TYPE_FLOAT,  {.dbl=45.f},     0.00001f,               360.f, FLAGS, "v_fov"},
 | 
						|
    {     "d_fov", "diagonal field of view",         OFFSET(d_fov), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},           0.f,               360.f, FLAGS, "d_fov"},
 | 
						|
    {    "h_flip", "flip out video horizontally",   OFFSET(h_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "h_flip"},
 | 
						|
    {    "v_flip", "flip out video vertically",     OFFSET(v_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "v_flip"},
 | 
						|
    {    "d_flip", "flip out video indepth",        OFFSET(d_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "d_flip"},
 | 
						|
    {   "ih_flip", "flip in video horizontally",   OFFSET(ih_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "ih_flip"},
 | 
						|
    {   "iv_flip", "flip in video vertically",     OFFSET(iv_flip), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "iv_flip"},
 | 
						|
    {  "in_trans", "transpose video input",   OFFSET(in_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "in_transpose"},
 | 
						|
    { "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL,   {.i64=0},               0,                   1, FLAGS, "out_transpose"},
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
AVFILTER_DEFINE_CLASS(v360);
 | 
						|
 | 
						|
static int query_formats(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    static const enum AVPixelFormat pix_fmts[] = {
 | 
						|
        // YUVA444
 | 
						|
        AV_PIX_FMT_YUVA444P,   AV_PIX_FMT_YUVA444P9,
 | 
						|
        AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
 | 
						|
        AV_PIX_FMT_YUVA444P16,
 | 
						|
 | 
						|
        // YUVA422
 | 
						|
        AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA422P9,
 | 
						|
        AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
 | 
						|
        AV_PIX_FMT_YUVA422P16,
 | 
						|
 | 
						|
        // YUVA420
 | 
						|
        AV_PIX_FMT_YUVA420P,   AV_PIX_FMT_YUVA420P9,
 | 
						|
        AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
 | 
						|
 | 
						|
        // YUVJ
 | 
						|
        AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
 | 
						|
        AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
 | 
						|
        AV_PIX_FMT_YUVJ411P,
 | 
						|
 | 
						|
        // YUV444
 | 
						|
        AV_PIX_FMT_YUV444P,   AV_PIX_FMT_YUV444P9,
 | 
						|
        AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
 | 
						|
        AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
 | 
						|
 | 
						|
        // YUV440
 | 
						|
        AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
 | 
						|
        AV_PIX_FMT_YUV440P12,
 | 
						|
 | 
						|
        // YUV422
 | 
						|
        AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV422P9,
 | 
						|
        AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
 | 
						|
        AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
 | 
						|
 | 
						|
        // YUV420
 | 
						|
        AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUV420P9,
 | 
						|
        AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
 | 
						|
        AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
 | 
						|
 | 
						|
        // YUV411
 | 
						|
        AV_PIX_FMT_YUV411P,
 | 
						|
 | 
						|
        // YUV410
 | 
						|
        AV_PIX_FMT_YUV410P,
 | 
						|
 | 
						|
        // GBR
 | 
						|
        AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRP9,
 | 
						|
        AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
 | 
						|
        AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
 | 
						|
 | 
						|
        // GBRA
 | 
						|
        AV_PIX_FMT_GBRAP,   AV_PIX_FMT_GBRAP10,
 | 
						|
        AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
 | 
						|
 | 
						|
        // GRAY
 | 
						|
        AV_PIX_FMT_GRAY8,  AV_PIX_FMT_GRAY9,
 | 
						|
        AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
 | 
						|
        AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
 | 
						|
 | 
						|
        AV_PIX_FMT_NONE
 | 
						|
    };
 | 
						|
 | 
						|
    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
 | 
						|
    if (!fmts_list)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    return ff_set_common_formats(ctx, fmts_list);
 | 
						|
}
 | 
						|
 | 
						|
#define DEFINE_REMAP1_LINE(bits, div)                                                           \
 | 
						|
static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src,              \
 | 
						|
                                      ptrdiff_t in_linesize,                                    \
 | 
						|
                                      const uint16_t *u, const uint16_t *v, const int16_t *ker) \
 | 
						|
{                                                                                               \
 | 
						|
    const uint##bits##_t *s = (const uint##bits##_t *)src;                                      \
 | 
						|
    uint##bits##_t *d = (uint##bits##_t *)dst;                                                  \
 | 
						|
                                                                                                \
 | 
						|
    in_linesize /= div;                                                                         \
 | 
						|
                                                                                                \
 | 
						|
    for (int x = 0; x < width; x++)                                                             \
 | 
						|
        d[x] = s[v[x] * in_linesize + u[x]];                                                    \
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_REMAP1_LINE( 8, 1)
 | 
						|
DEFINE_REMAP1_LINE(16, 2)
 | 
						|
 | 
						|
/**
 | 
						|
 * Generate remapping function with a given window size and pixel depth.
 | 
						|
 *
 | 
						|
 * @param ws size of interpolation window
 | 
						|
 * @param bits number of bits per pixel
 | 
						|
 */
 | 
						|
#define DEFINE_REMAP(ws, bits)                                                                             \
 | 
						|
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)          \
 | 
						|
{                                                                                                          \
 | 
						|
    ThreadData *td = arg;                                                                                  \
 | 
						|
    const V360Context *s = ctx->priv;                                                                      \
 | 
						|
    const AVFrame *in = td->in;                                                                            \
 | 
						|
    AVFrame *out = td->out;                                                                                \
 | 
						|
                                                                                                           \
 | 
						|
    for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) {                               \
 | 
						|
        for (int plane = 0; plane < s->nb_planes; plane++) {                                               \
 | 
						|
            const int in_linesize  = in->linesize[plane];                                                  \
 | 
						|
            const int out_linesize = out->linesize[plane];                                                 \
 | 
						|
            const int uv_linesize = s->uv_linesize[plane];                                                 \
 | 
						|
            const int in_offset_w = stereo ? s->in_offset_w[plane] : 0;                                    \
 | 
						|
            const int in_offset_h = stereo ? s->in_offset_h[plane] : 0;                                    \
 | 
						|
            const int out_offset_w = stereo ? s->out_offset_w[plane] : 0;                                  \
 | 
						|
            const int out_offset_h = stereo ? s->out_offset_h[plane] : 0;                                  \
 | 
						|
            const uint8_t *src = in->data[plane] + in_offset_h * in_linesize + in_offset_w * (bits >> 3);  \
 | 
						|
            uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3);    \
 | 
						|
            const int width = s->pr_width[plane];                                                          \
 | 
						|
            const int height = s->pr_height[plane];                                                        \
 | 
						|
                                                                                                           \
 | 
						|
            const int slice_start = (height *  jobnr     ) / nb_jobs;                                      \
 | 
						|
            const int slice_end   = (height * (jobnr + 1)) / nb_jobs;                                      \
 | 
						|
                                                                                                           \
 | 
						|
            for (int y = slice_start; y < slice_end; y++) {                                                \
 | 
						|
                const unsigned map = s->map[plane];                                                        \
 | 
						|
                const uint16_t *u = s->u[map] + y * uv_linesize * ws * ws;                                 \
 | 
						|
                const uint16_t *v = s->v[map] + y * uv_linesize * ws * ws;                                 \
 | 
						|
                const int16_t *ker = s->ker[map] + y * uv_linesize * ws * ws;                              \
 | 
						|
                                                                                                           \
 | 
						|
                s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker);                 \
 | 
						|
            }                                                                                              \
 | 
						|
        }                                                                                                  \
 | 
						|
    }                                                                                                      \
 | 
						|
                                                                                                           \
 | 
						|
    return 0;                                                                                              \
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_REMAP(1,  8)
 | 
						|
DEFINE_REMAP(2,  8)
 | 
						|
DEFINE_REMAP(4,  8)
 | 
						|
DEFINE_REMAP(1, 16)
 | 
						|
DEFINE_REMAP(2, 16)
 | 
						|
DEFINE_REMAP(4, 16)
 | 
						|
 | 
						|
#define DEFINE_REMAP_LINE(ws, bits, div)                                                                   \
 | 
						|
static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *src,                    \
 | 
						|
                                           ptrdiff_t in_linesize,                                          \
 | 
						|
                                           const uint16_t *u, const uint16_t *v, const int16_t *ker)       \
 | 
						|
{                                                                                                          \
 | 
						|
    const uint##bits##_t *s = (const uint##bits##_t *)src;                                                 \
 | 
						|
    uint##bits##_t *d = (uint##bits##_t *)dst;                                                             \
 | 
						|
                                                                                                           \
 | 
						|
    in_linesize /= div;                                                                                    \
 | 
						|
                                                                                                           \
 | 
						|
    for (int x = 0; x < width; x++) {                                                                      \
 | 
						|
        const uint16_t *uu = u + x * ws * ws;                                                              \
 | 
						|
        const uint16_t *vv = v + x * ws * ws;                                                              \
 | 
						|
        const int16_t *kker = ker + x * ws * ws;                                                           \
 | 
						|
        int tmp = 0;                                                                                       \
 | 
						|
                                                                                                           \
 | 
						|
        for (int i = 0; i < ws; i++) {                                                                     \
 | 
						|
            for (int j = 0; j < ws; j++) {                                                                 \
 | 
						|
                tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]];                \
 | 
						|
            }                                                                                              \
 | 
						|
        }                                                                                                  \
 | 
						|
                                                                                                           \
 | 
						|
        d[x] = av_clip_uint##bits(tmp >> 14);                                                              \
 | 
						|
    }                                                                                                      \
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_REMAP_LINE(2,  8, 1)
 | 
						|
DEFINE_REMAP_LINE(4,  8, 1)
 | 
						|
DEFINE_REMAP_LINE(2, 16, 2)
 | 
						|
DEFINE_REMAP_LINE(4, 16, 2)
 | 
						|
 | 
						|
void ff_v360_init(V360Context *s, int depth)
 | 
						|
{
 | 
						|
    switch (s->interp) {
 | 
						|
    case NEAREST:
 | 
						|
        s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
 | 
						|
        break;
 | 
						|
    case BILINEAR:
 | 
						|
        s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
 | 
						|
        break;
 | 
						|
    case BICUBIC:
 | 
						|
    case LANCZOS:
 | 
						|
        s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ARCH_X86)
 | 
						|
        ff_v360_init_x86(s, depth);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Save nearest pixel coordinates for remapping.
 | 
						|
 *
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 * @param rmap calculated 4x4 window
 | 
						|
 * @param u u remap data
 | 
						|
 * @param v v remap data
 | 
						|
 * @param ker ker remap data
 | 
						|
 */
 | 
						|
static void nearest_kernel(float du, float dv, const XYRemap *rmap,
 | 
						|
                           uint16_t *u, uint16_t *v, int16_t *ker)
 | 
						|
{
 | 
						|
    const int i = roundf(dv) + 1;
 | 
						|
    const int j = roundf(du) + 1;
 | 
						|
 | 
						|
    u[0] = rmap->u[i][j];
 | 
						|
    v[0] = rmap->v[i][j];
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate kernel for bilinear interpolation.
 | 
						|
 *
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 * @param rmap calculated 4x4 window
 | 
						|
 * @param u u remap data
 | 
						|
 * @param v v remap data
 | 
						|
 * @param ker ker remap data
 | 
						|
 */
 | 
						|
static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
 | 
						|
                            uint16_t *u, uint16_t *v, int16_t *ker)
 | 
						|
{
 | 
						|
    for (int i = 0; i < 2; i++) {
 | 
						|
        for (int j = 0; j < 2; j++) {
 | 
						|
            u[i * 2 + j] = rmap->u[i + 1][j + 1];
 | 
						|
            v[i * 2 + j] = rmap->v[i + 1][j + 1];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
 | 
						|
    ker[1] = lrintf(       du  * (1.f - dv) * 16385.f);
 | 
						|
    ker[2] = lrintf((1.f - du) *        dv  * 16385.f);
 | 
						|
    ker[3] = lrintf(       du  *        dv  * 16385.f);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 1-dimensional cubic coefficients.
 | 
						|
 *
 | 
						|
 * @param t relative coordinate
 | 
						|
 * @param coeffs coefficients
 | 
						|
 */
 | 
						|
static inline void calculate_bicubic_coeffs(float t, float *coeffs)
 | 
						|
{
 | 
						|
    const float tt  = t * t;
 | 
						|
    const float ttt = t * t * t;
 | 
						|
 | 
						|
    coeffs[0] =     - t / 3.f + tt / 2.f - ttt / 6.f;
 | 
						|
    coeffs[1] = 1.f - t / 2.f - tt       + ttt / 2.f;
 | 
						|
    coeffs[2] =       t       + tt / 2.f - ttt / 2.f;
 | 
						|
    coeffs[3] =     - t / 6.f            + ttt / 6.f;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate kernel for bicubic interpolation.
 | 
						|
 *
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 * @param rmap calculated 4x4 window
 | 
						|
 * @param u u remap data
 | 
						|
 * @param v v remap data
 | 
						|
 * @param ker ker remap data
 | 
						|
 */
 | 
						|
static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
 | 
						|
                           uint16_t *u, uint16_t *v, int16_t *ker)
 | 
						|
{
 | 
						|
    float du_coeffs[4];
 | 
						|
    float dv_coeffs[4];
 | 
						|
 | 
						|
    calculate_bicubic_coeffs(du, du_coeffs);
 | 
						|
    calculate_bicubic_coeffs(dv, dv_coeffs);
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
        for (int j = 0; j < 4; j++) {
 | 
						|
            u[i * 4 + j] = rmap->u[i][j];
 | 
						|
            v[i * 4 + j] = rmap->v[i][j];
 | 
						|
            ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 1-dimensional lanczos coefficients.
 | 
						|
 *
 | 
						|
 * @param t relative coordinate
 | 
						|
 * @param coeffs coefficients
 | 
						|
 */
 | 
						|
static inline void calculate_lanczos_coeffs(float t, float *coeffs)
 | 
						|
{
 | 
						|
    float sum = 0.f;
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
        const float x = M_PI * (t - i + 1);
 | 
						|
        if (x == 0.f) {
 | 
						|
            coeffs[i] = 1.f;
 | 
						|
        } else {
 | 
						|
            coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
 | 
						|
        }
 | 
						|
        sum += coeffs[i];
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
        coeffs[i] /= sum;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate kernel for lanczos interpolation.
 | 
						|
 *
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 * @param rmap calculated 4x4 window
 | 
						|
 * @param u u remap data
 | 
						|
 * @param v v remap data
 | 
						|
 * @param ker ker remap data
 | 
						|
 */
 | 
						|
static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
 | 
						|
                           uint16_t *u, uint16_t *v, int16_t *ker)
 | 
						|
{
 | 
						|
    float du_coeffs[4];
 | 
						|
    float dv_coeffs[4];
 | 
						|
 | 
						|
    calculate_lanczos_coeffs(du, du_coeffs);
 | 
						|
    calculate_lanczos_coeffs(dv, dv_coeffs);
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
        for (int j = 0; j < 4; j++) {
 | 
						|
            u[i * 4 + j] = rmap->u[i][j];
 | 
						|
            v[i * 4 + j] = rmap->v[i][j];
 | 
						|
            ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Modulo operation with only positive remainders.
 | 
						|
 *
 | 
						|
 * @param a dividend
 | 
						|
 * @param b divisor
 | 
						|
 *
 | 
						|
 * @return positive remainder of (a / b)
 | 
						|
 */
 | 
						|
static inline int mod(int a, int b)
 | 
						|
{
 | 
						|
    const int res = a % b;
 | 
						|
    if (res < 0) {
 | 
						|
        return res + b;
 | 
						|
    } else {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert char to corresponding direction.
 | 
						|
 * Used for cubemap options.
 | 
						|
 */
 | 
						|
static int get_direction(char c)
 | 
						|
{
 | 
						|
    switch (c) {
 | 
						|
    case 'r':
 | 
						|
        return RIGHT;
 | 
						|
    case 'l':
 | 
						|
        return LEFT;
 | 
						|
    case 'u':
 | 
						|
        return UP;
 | 
						|
    case 'd':
 | 
						|
        return DOWN;
 | 
						|
    case 'f':
 | 
						|
        return FRONT;
 | 
						|
    case 'b':
 | 
						|
        return BACK;
 | 
						|
    default:
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert char to corresponding rotation angle.
 | 
						|
 * Used for cubemap options.
 | 
						|
 */
 | 
						|
static int get_rotation(char c)
 | 
						|
{
 | 
						|
    switch (c) {
 | 
						|
    case '0':
 | 
						|
        return ROT_0;
 | 
						|
    case '1':
 | 
						|
        return ROT_90;
 | 
						|
    case '2':
 | 
						|
        return ROT_180;
 | 
						|
    case '3':
 | 
						|
        return ROT_270;
 | 
						|
    default:
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert char to corresponding rotation order.
 | 
						|
 */
 | 
						|
static int get_rorder(char c)
 | 
						|
{
 | 
						|
    switch (c) {
 | 
						|
    case 'Y':
 | 
						|
    case 'y':
 | 
						|
        return YAW;
 | 
						|
    case 'P':
 | 
						|
    case 'p':
 | 
						|
        return PITCH;
 | 
						|
    case 'R':
 | 
						|
    case 'r':
 | 
						|
        return ROLL;
 | 
						|
    default:
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing cubemap input format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_cube_in(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    for (int face = 0; face < NB_FACES; face++) {
 | 
						|
        const char c = s->in_forder[face];
 | 
						|
        int direction;
 | 
						|
 | 
						|
        if (c == '\0') {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        direction = get_direction(c);
 | 
						|
        if (direction == -1) {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incorrect direction symbol '%c' in in_forder option.\n", c);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        s->in_cubemap_face_order[direction] = face;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int face = 0; face < NB_FACES; face++) {
 | 
						|
        const char c = s->in_frot[face];
 | 
						|
        int rotation;
 | 
						|
 | 
						|
        if (c == '\0') {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        rotation = get_rotation(c);
 | 
						|
        if (rotation == -1) {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incorrect rotation symbol '%c' in in_frot option.\n", c);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        s->in_cubemap_face_rotation[face] = rotation;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing cubemap output format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_cube_out(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    for (int face = 0; face < NB_FACES; face++) {
 | 
						|
        const char c = s->out_forder[face];
 | 
						|
        int direction;
 | 
						|
 | 
						|
        if (c == '\0') {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        direction = get_direction(c);
 | 
						|
        if (direction == -1) {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incorrect direction symbol '%c' in out_forder option.\n", c);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        s->out_cubemap_direction_order[face] = direction;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int face = 0; face < NB_FACES; face++) {
 | 
						|
        const char c = s->out_frot[face];
 | 
						|
        int rotation;
 | 
						|
 | 
						|
        if (c == '\0') {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        rotation = get_rotation(c);
 | 
						|
        if (rotation == -1) {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incorrect rotation symbol '%c' in out_frot option.\n", c);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        s->out_cubemap_face_rotation[face] = rotation;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void rotate_cube_face(float *uf, float *vf, int rotation)
 | 
						|
{
 | 
						|
    float tmp;
 | 
						|
 | 
						|
    switch (rotation) {
 | 
						|
    case ROT_0:
 | 
						|
        break;
 | 
						|
    case ROT_90:
 | 
						|
        tmp =  *uf;
 | 
						|
        *uf = -*vf;
 | 
						|
        *vf =  tmp;
 | 
						|
        break;
 | 
						|
    case ROT_180:
 | 
						|
        *uf = -*uf;
 | 
						|
        *vf = -*vf;
 | 
						|
        break;
 | 
						|
    case ROT_270:
 | 
						|
        tmp = -*uf;
 | 
						|
        *uf =  *vf;
 | 
						|
        *vf =  tmp;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
 | 
						|
{
 | 
						|
    float tmp;
 | 
						|
 | 
						|
    switch (rotation) {
 | 
						|
    case ROT_0:
 | 
						|
        break;
 | 
						|
    case ROT_90:
 | 
						|
        tmp = -*uf;
 | 
						|
        *uf =  *vf;
 | 
						|
        *vf =  tmp;
 | 
						|
        break;
 | 
						|
    case ROT_180:
 | 
						|
        *uf = -*uf;
 | 
						|
        *vf = -*vf;
 | 
						|
        break;
 | 
						|
    case ROT_270:
 | 
						|
        tmp =  *uf;
 | 
						|
        *uf = -*vf;
 | 
						|
        *vf =  tmp;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Normalize vector.
 | 
						|
 *
 | 
						|
 * @param vec vector
 | 
						|
 */
 | 
						|
static void normalize_vector(float *vec)
 | 
						|
{
 | 
						|
    const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
 | 
						|
 | 
						|
    vec[0] /= norm;
 | 
						|
    vec[1] /= norm;
 | 
						|
    vec[2] /= norm;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding cubemap position.
 | 
						|
 * Common operation for every cubemap.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param uf horizontal cubemap coordinate [0, 1)
 | 
						|
 * @param vf vertical cubemap coordinate [0, 1)
 | 
						|
 * @param face face of cubemap
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param scalew scale for uf
 | 
						|
 * @param scaleh scale for vf
 | 
						|
 */
 | 
						|
static void cube_to_xyz(const V360Context *s,
 | 
						|
                        float uf, float vf, int face,
 | 
						|
                        float *vec, float scalew, float scaleh)
 | 
						|
{
 | 
						|
    const int direction = s->out_cubemap_direction_order[face];
 | 
						|
    float l_x, l_y, l_z;
 | 
						|
 | 
						|
    uf /= scalew;
 | 
						|
    vf /= scaleh;
 | 
						|
 | 
						|
    rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
 | 
						|
 | 
						|
    switch (direction) {
 | 
						|
    case RIGHT:
 | 
						|
        l_x =  1.f;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z =  uf;
 | 
						|
        break;
 | 
						|
    case LEFT:
 | 
						|
        l_x = -1.f;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z = -uf;
 | 
						|
        break;
 | 
						|
    case UP:
 | 
						|
        l_x =  uf;
 | 
						|
        l_y =  1.f;
 | 
						|
        l_z = -vf;
 | 
						|
        break;
 | 
						|
    case DOWN:
 | 
						|
        l_x =  uf;
 | 
						|
        l_y = -1.f;
 | 
						|
        l_z =  vf;
 | 
						|
        break;
 | 
						|
    case FRONT:
 | 
						|
        l_x =  uf;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z = -1.f;
 | 
						|
        break;
 | 
						|
    case BACK:
 | 
						|
        l_x = -uf;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z =  1.f;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    vec[0] = l_x;
 | 
						|
    vec[1] = l_y;
 | 
						|
    vec[2] = l_z;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate cubemap position for corresponding 3D coordinates on sphere.
 | 
						|
 * Common operation for every cubemap.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinated on sphere
 | 
						|
 * @param uf horizontal cubemap coordinate [0, 1)
 | 
						|
 * @param vf vertical cubemap coordinate [0, 1)
 | 
						|
 * @param direction direction of view
 | 
						|
 */
 | 
						|
static void xyz_to_cube(const V360Context *s,
 | 
						|
                        const float *vec,
 | 
						|
                        float *uf, float *vf, int *direction)
 | 
						|
{
 | 
						|
    const float phi   = atan2f(vec[0], -vec[2]);
 | 
						|
    const float theta = asinf(-vec[1]);
 | 
						|
    float phi_norm, theta_threshold;
 | 
						|
    int face;
 | 
						|
 | 
						|
    if (phi >= -M_PI_4 && phi < M_PI_4) {
 | 
						|
        *direction = FRONT;
 | 
						|
        phi_norm = phi;
 | 
						|
    } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
 | 
						|
        *direction = LEFT;
 | 
						|
        phi_norm = phi + M_PI_2;
 | 
						|
    } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
 | 
						|
        *direction = RIGHT;
 | 
						|
        phi_norm = phi - M_PI_2;
 | 
						|
    } else {
 | 
						|
        *direction = BACK;
 | 
						|
        phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
 | 
						|
    }
 | 
						|
 | 
						|
    theta_threshold = atanf(cosf(phi_norm));
 | 
						|
    if (theta > theta_threshold) {
 | 
						|
        *direction = DOWN;
 | 
						|
    } else if (theta < -theta_threshold) {
 | 
						|
        *direction = UP;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (*direction) {
 | 
						|
    case RIGHT:
 | 
						|
        *uf =  vec[2] / vec[0];
 | 
						|
        *vf = -vec[1] / vec[0];
 | 
						|
        break;
 | 
						|
    case LEFT:
 | 
						|
        *uf =  vec[2] / vec[0];
 | 
						|
        *vf =  vec[1] / vec[0];
 | 
						|
        break;
 | 
						|
    case UP:
 | 
						|
        *uf =  vec[0] / vec[1];
 | 
						|
        *vf = -vec[2] / vec[1];
 | 
						|
        break;
 | 
						|
    case DOWN:
 | 
						|
        *uf = -vec[0] / vec[1];
 | 
						|
        *vf = -vec[2] / vec[1];
 | 
						|
        break;
 | 
						|
    case FRONT:
 | 
						|
        *uf = -vec[0] / vec[2];
 | 
						|
        *vf =  vec[1] / vec[2];
 | 
						|
        break;
 | 
						|
    case BACK:
 | 
						|
        *uf = -vec[0] / vec[2];
 | 
						|
        *vf = -vec[1] / vec[2];
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    face = s->in_cubemap_face_order[*direction];
 | 
						|
    rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
 | 
						|
 | 
						|
    (*uf) *= s->input_mirror_modifier[0];
 | 
						|
    (*vf) *= s->input_mirror_modifier[1];
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Find position on another cube face in case of overflow/underflow.
 | 
						|
 * Used for calculation of interpolation window.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param uf horizontal cubemap coordinate
 | 
						|
 * @param vf vertical cubemap coordinate
 | 
						|
 * @param direction direction of view
 | 
						|
 * @param new_uf new horizontal cubemap coordinate
 | 
						|
 * @param new_vf new vertical cubemap coordinate
 | 
						|
 * @param face face position on cubemap
 | 
						|
 */
 | 
						|
static void process_cube_coordinates(const V360Context *s,
 | 
						|
                                     float uf, float vf, int direction,
 | 
						|
                                     float *new_uf, float *new_vf, int *face)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     *  Cubemap orientation
 | 
						|
     *
 | 
						|
     *           width
 | 
						|
     *         <------->
 | 
						|
     *         +-------+
 | 
						|
     *         |       |                              U
 | 
						|
     *         | up    |                   h       ------->
 | 
						|
     * +-------+-------+-------+-------+ ^ e      |
 | 
						|
     * |       |       |       |       | | i    V |
 | 
						|
     * | left  | front | right | back  | | g      |
 | 
						|
     * +-------+-------+-------+-------+ v h      v
 | 
						|
     *         |       |                   t
 | 
						|
     *         | down  |
 | 
						|
     *         +-------+
 | 
						|
     */
 | 
						|
 | 
						|
    *face = s->in_cubemap_face_order[direction];
 | 
						|
    rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
 | 
						|
 | 
						|
    if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
 | 
						|
        // There are no pixels to use in this case
 | 
						|
        *new_uf = uf;
 | 
						|
        *new_vf = vf;
 | 
						|
    } else if (uf < -1.f) {
 | 
						|
        uf += 2.f;
 | 
						|
        switch (direction) {
 | 
						|
        case RIGHT:
 | 
						|
            direction = FRONT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case LEFT:
 | 
						|
            direction = BACK;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case UP:
 | 
						|
            direction = LEFT;
 | 
						|
            *new_uf =  vf;
 | 
						|
            *new_vf = -uf;
 | 
						|
            break;
 | 
						|
        case DOWN:
 | 
						|
            direction = LEFT;
 | 
						|
            *new_uf = -vf;
 | 
						|
            *new_vf =  uf;
 | 
						|
            break;
 | 
						|
        case FRONT:
 | 
						|
            direction = LEFT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case BACK:
 | 
						|
            direction = RIGHT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
    } else if (uf >= 1.f) {
 | 
						|
        uf -= 2.f;
 | 
						|
        switch (direction) {
 | 
						|
        case RIGHT:
 | 
						|
            direction = BACK;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case LEFT:
 | 
						|
            direction = FRONT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case UP:
 | 
						|
            direction = RIGHT;
 | 
						|
            *new_uf = -vf;
 | 
						|
            *new_vf =  uf;
 | 
						|
            break;
 | 
						|
        case DOWN:
 | 
						|
            direction = RIGHT;
 | 
						|
            *new_uf =  vf;
 | 
						|
            *new_vf = -uf;
 | 
						|
            break;
 | 
						|
        case FRONT:
 | 
						|
            direction = RIGHT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case BACK:
 | 
						|
            direction = LEFT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
    } else if (vf < -1.f) {
 | 
						|
        vf += 2.f;
 | 
						|
        switch (direction) {
 | 
						|
        case RIGHT:
 | 
						|
            direction = UP;
 | 
						|
            *new_uf =  vf;
 | 
						|
            *new_vf = -uf;
 | 
						|
            break;
 | 
						|
        case LEFT:
 | 
						|
            direction = UP;
 | 
						|
            *new_uf = -vf;
 | 
						|
            *new_vf =  uf;
 | 
						|
            break;
 | 
						|
        case UP:
 | 
						|
            direction = BACK;
 | 
						|
            *new_uf = -uf;
 | 
						|
            *new_vf = -vf;
 | 
						|
            break;
 | 
						|
        case DOWN:
 | 
						|
            direction = FRONT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case FRONT:
 | 
						|
            direction = UP;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case BACK:
 | 
						|
            direction = UP;
 | 
						|
            *new_uf = -uf;
 | 
						|
            *new_vf = -vf;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
    } else if (vf >= 1.f) {
 | 
						|
        vf -= 2.f;
 | 
						|
        switch (direction) {
 | 
						|
        case RIGHT:
 | 
						|
            direction = DOWN;
 | 
						|
            *new_uf = -vf;
 | 
						|
            *new_vf =  uf;
 | 
						|
            break;
 | 
						|
        case LEFT:
 | 
						|
            direction = DOWN;
 | 
						|
            *new_uf =  vf;
 | 
						|
            *new_vf = -uf;
 | 
						|
            break;
 | 
						|
        case UP:
 | 
						|
            direction = FRONT;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case DOWN:
 | 
						|
            direction = BACK;
 | 
						|
            *new_uf = -uf;
 | 
						|
            *new_vf = -vf;
 | 
						|
            break;
 | 
						|
        case FRONT:
 | 
						|
            direction = DOWN;
 | 
						|
            *new_uf =  uf;
 | 
						|
            *new_vf =  vf;
 | 
						|
            break;
 | 
						|
        case BACK:
 | 
						|
            direction = DOWN;
 | 
						|
            *new_uf = -uf;
 | 
						|
            *new_vf = -vf;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        // Inside cube face
 | 
						|
        *new_uf = uf;
 | 
						|
        *new_vf = vf;
 | 
						|
    }
 | 
						|
 | 
						|
    *face = s->in_cubemap_face_order[direction];
 | 
						|
    rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void cube3x2_to_xyz(const V360Context *s,
 | 
						|
                           int i, int j, int width, int height,
 | 
						|
                           float *vec)
 | 
						|
{
 | 
						|
    const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width  / 3.f) : 1.f - s->out_pad;
 | 
						|
    const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 2.f) : 1.f - s->out_pad;
 | 
						|
 | 
						|
    const float ew = width  / 3.f;
 | 
						|
    const float eh = height / 2.f;
 | 
						|
 | 
						|
    const int u_face = floorf(i / ew);
 | 
						|
    const int v_face = floorf(j / eh);
 | 
						|
    const int face = u_face + 3 * v_face;
 | 
						|
 | 
						|
    const int u_shift = ceilf(ew * u_face);
 | 
						|
    const int v_shift = ceilf(eh * v_face);
 | 
						|
    const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
 | 
						|
    const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
 | 
						|
 | 
						|
    const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
 | 
						|
    const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 | 
						|
 | 
						|
    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_cube3x2(const V360Context *s,
 | 
						|
                           const float *vec, int width, int height,
 | 
						|
                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width  / 3.f) : 1.f - s->in_pad;
 | 
						|
    const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 2.f) : 1.f - s->in_pad;
 | 
						|
    const float ew = width  / 3.f;
 | 
						|
    const float eh = height / 2.f;
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
    int ewi, ehi;
 | 
						|
    int direction, face;
 | 
						|
    int u_face, v_face;
 | 
						|
 | 
						|
    xyz_to_cube(s, vec, &uf, &vf, &direction);
 | 
						|
 | 
						|
    uf *= scalew;
 | 
						|
    vf *= scaleh;
 | 
						|
 | 
						|
    face = s->in_cubemap_face_order[direction];
 | 
						|
    u_face = face % 3;
 | 
						|
    v_face = face / 3;
 | 
						|
    ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
 | 
						|
    ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
 | 
						|
 | 
						|
    uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | 
						|
    vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            int new_ui = ui + j;
 | 
						|
            int new_vi = vi + i;
 | 
						|
            int u_shift, v_shift;
 | 
						|
            int new_ewi, new_ehi;
 | 
						|
 | 
						|
            if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | 
						|
                face = s->in_cubemap_face_order[direction];
 | 
						|
 | 
						|
                u_face = face % 3;
 | 
						|
                v_face = face / 3;
 | 
						|
                u_shift = ceilf(ew * u_face);
 | 
						|
                v_shift = ceilf(eh * v_face);
 | 
						|
            } else {
 | 
						|
                uf = 2.f * new_ui / ewi - 1.f;
 | 
						|
                vf = 2.f * new_vi / ehi - 1.f;
 | 
						|
 | 
						|
                uf /= scalew;
 | 
						|
                vf /= scaleh;
 | 
						|
 | 
						|
                process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | 
						|
 | 
						|
                uf *= scalew;
 | 
						|
                vf *= scaleh;
 | 
						|
 | 
						|
                u_face = face % 3;
 | 
						|
                v_face = face / 3;
 | 
						|
                u_shift = ceilf(ew * u_face);
 | 
						|
                v_shift = ceilf(eh * v_face);
 | 
						|
                new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
 | 
						|
                new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
 | 
						|
 | 
						|
                new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
 | 
						|
                new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
 | 
						|
            }
 | 
						|
 | 
						|
            us[i + 1][j + 1] = u_shift + new_ui;
 | 
						|
            vs[i + 1][j + 1] = v_shift + new_vi;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void cube1x6_to_xyz(const V360Context *s,
 | 
						|
                           int i, int j, int width, int height,
 | 
						|
                           float *vec)
 | 
						|
{
 | 
						|
    const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_width : 1.f - s->out_pad;
 | 
						|
    const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 6.f) : 1.f - s->out_pad;
 | 
						|
 | 
						|
    const float ew = width;
 | 
						|
    const float eh = height / 6.f;
 | 
						|
 | 
						|
    const int face = floorf(j / eh);
 | 
						|
 | 
						|
    const int v_shift = ceilf(eh * face);
 | 
						|
    const int ehi = ceilf(eh * (face + 1)) - v_shift;
 | 
						|
 | 
						|
    const float uf = 2.f * (i           + 0.5f) / ew  - 1.f;
 | 
						|
    const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
 | 
						|
 | 
						|
    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void cube6x1_to_xyz(const V360Context *s,
 | 
						|
                           int i, int j, int width, int height,
 | 
						|
                           float *vec)
 | 
						|
{
 | 
						|
    const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width / 6.f)   : 1.f - s->out_pad;
 | 
						|
    const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_height : 1.f - s->out_pad;
 | 
						|
 | 
						|
    const float ew = width / 6.f;
 | 
						|
    const float eh = height;
 | 
						|
 | 
						|
    const int face = floorf(i / ew);
 | 
						|
 | 
						|
    const int u_shift = ceilf(ew * face);
 | 
						|
    const int ewi = ceilf(ew * (face + 1)) - u_shift;
 | 
						|
 | 
						|
    const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
 | 
						|
    const float vf = 2.f * (j           + 0.5f) / eh  - 1.f;
 | 
						|
 | 
						|
    cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_cube1x6(const V360Context *s,
 | 
						|
                           const float *vec, int width, int height,
 | 
						|
                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_width : 1.f - s->in_pad;
 | 
						|
    const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 6.f) : 1.f - s->in_pad;
 | 
						|
    const float eh = height / 6.f;
 | 
						|
    const int ewi = width;
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
    int ehi;
 | 
						|
    int direction, face;
 | 
						|
 | 
						|
    xyz_to_cube(s, vec, &uf, &vf, &direction);
 | 
						|
 | 
						|
    uf *= scalew;
 | 
						|
    vf *= scaleh;
 | 
						|
 | 
						|
    face = s->in_cubemap_face_order[direction];
 | 
						|
    ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
 | 
						|
 | 
						|
    uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | 
						|
    vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            int new_ui = ui + j;
 | 
						|
            int new_vi = vi + i;
 | 
						|
            int v_shift;
 | 
						|
            int new_ehi;
 | 
						|
 | 
						|
            if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | 
						|
                face = s->in_cubemap_face_order[direction];
 | 
						|
 | 
						|
                v_shift = ceilf(eh * face);
 | 
						|
            } else {
 | 
						|
                uf = 2.f * new_ui / ewi - 1.f;
 | 
						|
                vf = 2.f * new_vi / ehi - 1.f;
 | 
						|
 | 
						|
                uf /= scalew;
 | 
						|
                vf /= scaleh;
 | 
						|
 | 
						|
                process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | 
						|
 | 
						|
                uf *= scalew;
 | 
						|
                vf *= scaleh;
 | 
						|
 | 
						|
                v_shift = ceilf(eh * face);
 | 
						|
                new_ehi = ceilf(eh * (face + 1)) - v_shift;
 | 
						|
 | 
						|
                new_ui = av_clip(roundf(0.5f *     ewi * (uf + 1.f)), 0,     ewi - 1);
 | 
						|
                new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
 | 
						|
            }
 | 
						|
 | 
						|
            us[i + 1][j + 1] =           new_ui;
 | 
						|
            vs[i + 1][j + 1] = v_shift + new_vi;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_cube6x1(const V360Context *s,
 | 
						|
                           const float *vec, int width, int height,
 | 
						|
                           uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width / 6.f)   : 1.f - s->in_pad;
 | 
						|
    const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_height : 1.f - s->in_pad;
 | 
						|
    const float ew = width / 6.f;
 | 
						|
    const int ehi = height;
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
    int ewi;
 | 
						|
    int direction, face;
 | 
						|
 | 
						|
    xyz_to_cube(s, vec, &uf, &vf, &direction);
 | 
						|
 | 
						|
    uf *= scalew;
 | 
						|
    vf *= scaleh;
 | 
						|
 | 
						|
    face = s->in_cubemap_face_order[direction];
 | 
						|
    ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
 | 
						|
 | 
						|
    uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
 | 
						|
    vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            int new_ui = ui + j;
 | 
						|
            int new_vi = vi + i;
 | 
						|
            int u_shift;
 | 
						|
            int new_ewi;
 | 
						|
 | 
						|
            if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
 | 
						|
                face = s->in_cubemap_face_order[direction];
 | 
						|
 | 
						|
                u_shift = ceilf(ew * face);
 | 
						|
            } else {
 | 
						|
                uf = 2.f * new_ui / ewi - 1.f;
 | 
						|
                vf = 2.f * new_vi / ehi - 1.f;
 | 
						|
 | 
						|
                uf /= scalew;
 | 
						|
                vf /= scaleh;
 | 
						|
 | 
						|
                process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
 | 
						|
 | 
						|
                uf *= scalew;
 | 
						|
                vf *= scaleh;
 | 
						|
 | 
						|
                u_shift = ceilf(ew * face);
 | 
						|
                new_ewi = ceilf(ew * (face + 1)) - u_shift;
 | 
						|
 | 
						|
                new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
 | 
						|
                new_vi = av_clip(roundf(0.5f *     ehi * (vf + 1.f)), 0,     ehi - 1);
 | 
						|
            }
 | 
						|
 | 
						|
            us[i + 1][j + 1] = u_shift + new_ui;
 | 
						|
            vs[i + 1][j + 1] =           new_vi;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void equirect_to_xyz(const V360Context *s,
 | 
						|
                            int i, int j, int width, int height,
 | 
						|
                            float *vec)
 | 
						|
{
 | 
						|
    const float phi   = ((2.f * i) / width  - 1.f) * M_PI;
 | 
						|
    const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
 | 
						|
 | 
						|
    const float sin_phi   = sinf(phi);
 | 
						|
    const float cos_phi   = cosf(phi);
 | 
						|
    const float sin_theta = sinf(theta);
 | 
						|
    const float cos_theta = cosf(theta);
 | 
						|
 | 
						|
    vec[0] =  cos_theta * sin_phi;
 | 
						|
    vec[1] = -sin_theta;
 | 
						|
    vec[2] = -cos_theta * cos_phi;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing stereographic output format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_stereographic_out(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
 | 
						|
    s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void stereographic_to_xyz(const V360Context *s,
 | 
						|
                                 int i, int j, int width, int height,
 | 
						|
                                 float *vec)
 | 
						|
{
 | 
						|
    const float x = ((2.f * i) / width  - 1.f) * s->flat_range[0];
 | 
						|
    const float y = ((2.f * j) / height - 1.f) * s->flat_range[1];
 | 
						|
    const float xy = x * x + y * y;
 | 
						|
 | 
						|
    vec[0] = 2.f * x / (1.f + xy);
 | 
						|
    vec[1] = (-1.f + xy) / (1.f + xy);
 | 
						|
    vec[2] = 2.f * y / (1.f + xy);
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_stereographic(const V360Context *s,
 | 
						|
                                 const float *vec, int width, int height,
 | 
						|
                                 uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float x = av_clipf(vec[0] / (1.f - vec[1]), -1.f, 1.f) * s->input_mirror_modifier[0];
 | 
						|
    const float y = av_clipf(vec[2] / (1.f - vec[1]), -1.f, 1.f) * s->input_mirror_modifier[1];
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (x + 1.f) * width  / 2.f;
 | 
						|
    vf = (y + 1.f) * height / 2.f;
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_equirect(const V360Context *s,
 | 
						|
                            const float *vec, int width, int height,
 | 
						|
                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
 | 
						|
    const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (phi   / M_PI   + 1.f) * width  / 2.f;
 | 
						|
    vf = (theta / M_PI_2 + 1.f) * height / 2.f;
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = mod(ui + j, width);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_mercator(const V360Context *s,
 | 
						|
                            const float *vec, int width, int height,
 | 
						|
                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
 | 
						|
    const float theta = -vec[1] * s->input_mirror_modifier[1];
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (phi / M_PI + 1.f) * width / 2.f;
 | 
						|
    vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void mercator_to_xyz(const V360Context *s,
 | 
						|
                            int i, int j, int width, int height,
 | 
						|
                            float *vec)
 | 
						|
{
 | 
						|
    const float phi = ((2.f * i) / width - 1.f) * M_PI + M_PI_2;
 | 
						|
    const float y   = ((2.f * j) / height - 1.f) * M_PI;
 | 
						|
    const float div = expf(2.f * y) + 1.f;
 | 
						|
 | 
						|
    const float sin_phi   = sinf(phi);
 | 
						|
    const float cos_phi   = cosf(phi);
 | 
						|
    const float sin_theta = -2.f * expf(y) / div;
 | 
						|
    const float cos_theta = -(expf(2.f * y) - 1.f) / div;
 | 
						|
 | 
						|
    vec[0] = sin_theta * cos_phi;
 | 
						|
    vec[1] = cos_theta;
 | 
						|
    vec[2] = sin_theta * sin_phi;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in ball format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_ball(const V360Context *s,
 | 
						|
                        const float *vec, int width, int height,
 | 
						|
                        uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float l = hypotf(vec[0], vec[1]);
 | 
						|
    const float r = sqrtf(1.f + vec[2]) / M_SQRT2;
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (1.f + r * vec[0] * s->input_mirror_modifier[0] / (l > 0.f ? l : 1.f)) * width  * 0.5f;
 | 
						|
    vf = (1.f - r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in ball format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void ball_to_xyz(const V360Context *s,
 | 
						|
                        int i, int j, int width, int height,
 | 
						|
                        float *vec)
 | 
						|
{
 | 
						|
    const float x = (2.f * i) / width  - 1.f;
 | 
						|
    const float y = (2.f * j) / height - 1.f;
 | 
						|
    const float l = hypotf(x, y);
 | 
						|
 | 
						|
    if (l <= 1.f) {
 | 
						|
        const float z = 2.f * l * sqrtf(1.f - l * l);
 | 
						|
 | 
						|
        vec[0] =  z * x / (l > 0.f ? l : 1.f);
 | 
						|
        vec[1] = -z * y / (l > 0.f ? l : 1.f);
 | 
						|
        vec[2] = -1.f + 2.f * l * l;
 | 
						|
    } else {
 | 
						|
        vec[0] =  0.f;
 | 
						|
        vec[1] = -1.f;
 | 
						|
        vec[2] =  0.f;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void hammer_to_xyz(const V360Context *s,
 | 
						|
                          int i, int j, int width, int height,
 | 
						|
                          float *vec)
 | 
						|
{
 | 
						|
    const float x = ((2.f * i) / width  - 1.f);
 | 
						|
    const float y = ((2.f * j) / height - 1.f);
 | 
						|
 | 
						|
    const float xx = x * x;
 | 
						|
    const float yy = y * y;
 | 
						|
 | 
						|
    const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
 | 
						|
 | 
						|
    const float a = M_SQRT2 * x * z;
 | 
						|
    const float b = 2.f * z * z - 1.f;
 | 
						|
 | 
						|
    const float aa = a * a;
 | 
						|
    const float bb = b * b;
 | 
						|
 | 
						|
    const float w = sqrtf(1.f - 2.f * yy * z * z);
 | 
						|
 | 
						|
    vec[0] =  w * 2.f * a * b / (aa + bb);
 | 
						|
    vec[1] = -M_SQRT2 * y * z;
 | 
						|
    vec[2] = -w * (bb  - aa) / (aa + bb);
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_hammer(const V360Context *s,
 | 
						|
                          const float *vec, int width, int height,
 | 
						|
                          uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float theta = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
 | 
						|
 | 
						|
    const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
 | 
						|
    const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
 | 
						|
    const float y = -vec[1] / z * s->input_mirror_modifier[1];
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (x + 1.f) * width  / 2.f;
 | 
						|
    vf = (y + 1.f) * height / 2.f;
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void sinusoidal_to_xyz(const V360Context *s,
 | 
						|
                              int i, int j, int width, int height,
 | 
						|
                              float *vec)
 | 
						|
{
 | 
						|
    const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
 | 
						|
    const float phi   = ((2.f * i) / width  - 1.f) * M_PI / cosf(theta);
 | 
						|
 | 
						|
    const float sin_phi   = sinf(phi);
 | 
						|
    const float cos_phi   = cosf(phi);
 | 
						|
    const float sin_theta = sinf(theta);
 | 
						|
    const float cos_theta = cosf(theta);
 | 
						|
 | 
						|
    vec[0] =  cos_theta * sin_phi;
 | 
						|
    vec[1] = -sin_theta;
 | 
						|
    vec[2] = -cos_theta * cos_phi;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_sinusoidal(const V360Context *s,
 | 
						|
                              const float *vec, int width, int height,
 | 
						|
                              uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
 | 
						|
    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    uf = (phi   / M_PI   + 1.f) * width  / 2.f;
 | 
						|
    vf = (theta / M_PI_2 + 1.f) * height / 2.f;
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing equi-angular cubemap input format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_eac_in(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    if (s->ih_flip && s->iv_flip) {
 | 
						|
        s->in_cubemap_face_order[RIGHT] = BOTTOM_LEFT;
 | 
						|
        s->in_cubemap_face_order[LEFT]  = BOTTOM_RIGHT;
 | 
						|
        s->in_cubemap_face_order[UP]    = TOP_LEFT;
 | 
						|
        s->in_cubemap_face_order[DOWN]  = TOP_RIGHT;
 | 
						|
        s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
 | 
						|
        s->in_cubemap_face_order[BACK]  = TOP_MIDDLE;
 | 
						|
    } else if (s->ih_flip) {
 | 
						|
        s->in_cubemap_face_order[RIGHT] = TOP_LEFT;
 | 
						|
        s->in_cubemap_face_order[LEFT]  = TOP_RIGHT;
 | 
						|
        s->in_cubemap_face_order[UP]    = BOTTOM_LEFT;
 | 
						|
        s->in_cubemap_face_order[DOWN]  = BOTTOM_RIGHT;
 | 
						|
        s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
 | 
						|
        s->in_cubemap_face_order[BACK]  = BOTTOM_MIDDLE;
 | 
						|
    } else if (s->iv_flip) {
 | 
						|
        s->in_cubemap_face_order[RIGHT] = BOTTOM_RIGHT;
 | 
						|
        s->in_cubemap_face_order[LEFT]  = BOTTOM_LEFT;
 | 
						|
        s->in_cubemap_face_order[UP]    = TOP_RIGHT;
 | 
						|
        s->in_cubemap_face_order[DOWN]  = TOP_LEFT;
 | 
						|
        s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
 | 
						|
        s->in_cubemap_face_order[BACK]  = TOP_MIDDLE;
 | 
						|
    } else {
 | 
						|
        s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
 | 
						|
        s->in_cubemap_face_order[LEFT]  = TOP_LEFT;
 | 
						|
        s->in_cubemap_face_order[UP]    = BOTTOM_RIGHT;
 | 
						|
        s->in_cubemap_face_order[DOWN]  = BOTTOM_LEFT;
 | 
						|
        s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
 | 
						|
        s->in_cubemap_face_order[BACK]  = BOTTOM_MIDDLE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->iv_flip) {
 | 
						|
        s->in_cubemap_face_rotation[TOP_LEFT]      = ROT_270;
 | 
						|
        s->in_cubemap_face_rotation[TOP_MIDDLE]    = ROT_90;
 | 
						|
        s->in_cubemap_face_rotation[TOP_RIGHT]     = ROT_270;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_0;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_0;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_0;
 | 
						|
    } else {
 | 
						|
        s->in_cubemap_face_rotation[TOP_LEFT]      = ROT_0;
 | 
						|
        s->in_cubemap_face_rotation[TOP_MIDDLE]    = ROT_0;
 | 
						|
        s->in_cubemap_face_rotation[TOP_RIGHT]     = ROT_0;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_270;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
 | 
						|
        s->in_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_270;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing equi-angular cubemap output format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_eac_out(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    s->out_cubemap_direction_order[TOP_LEFT]      = LEFT;
 | 
						|
    s->out_cubemap_direction_order[TOP_MIDDLE]    = FRONT;
 | 
						|
    s->out_cubemap_direction_order[TOP_RIGHT]     = RIGHT;
 | 
						|
    s->out_cubemap_direction_order[BOTTOM_LEFT]   = DOWN;
 | 
						|
    s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
 | 
						|
    s->out_cubemap_direction_order[BOTTOM_RIGHT]  = UP;
 | 
						|
 | 
						|
    s->out_cubemap_face_rotation[TOP_LEFT]      = ROT_0;
 | 
						|
    s->out_cubemap_face_rotation[TOP_MIDDLE]    = ROT_0;
 | 
						|
    s->out_cubemap_face_rotation[TOP_RIGHT]     = ROT_0;
 | 
						|
    s->out_cubemap_face_rotation[BOTTOM_LEFT]   = ROT_270;
 | 
						|
    s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
 | 
						|
    s->out_cubemap_face_rotation[BOTTOM_RIGHT]  = ROT_270;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void eac_to_xyz(const V360Context *s,
 | 
						|
                       int i, int j, int width, int height,
 | 
						|
                       float *vec)
 | 
						|
{
 | 
						|
    const float pixel_pad = 2;
 | 
						|
    const float u_pad = pixel_pad / width;
 | 
						|
    const float v_pad = pixel_pad / height;
 | 
						|
 | 
						|
    int u_face, v_face, face;
 | 
						|
 | 
						|
    float l_x, l_y, l_z;
 | 
						|
 | 
						|
    float uf = (i + 0.5f) / width;
 | 
						|
    float vf = (j + 0.5f) / height;
 | 
						|
 | 
						|
    // EAC has 2-pixel padding on faces except between faces on the same row
 | 
						|
    // Padding pixels seems not to be stretched with tangent as regular pixels
 | 
						|
    // Formulas below approximate original padding as close as I could get experimentally
 | 
						|
 | 
						|
    // Horizontal padding
 | 
						|
    uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
 | 
						|
    if (uf < 0.f) {
 | 
						|
        u_face = 0;
 | 
						|
        uf -= 0.5f;
 | 
						|
    } else if (uf >= 3.f) {
 | 
						|
        u_face = 2;
 | 
						|
        uf -= 2.5f;
 | 
						|
    } else {
 | 
						|
        u_face = floorf(uf);
 | 
						|
        uf = fmodf(uf, 1.f) - 0.5f;
 | 
						|
    }
 | 
						|
 | 
						|
    // Vertical padding
 | 
						|
    v_face = floorf(vf * 2.f);
 | 
						|
    vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
 | 
						|
 | 
						|
    if (uf >= -0.5f && uf < 0.5f) {
 | 
						|
        uf = tanf(M_PI_2 * uf);
 | 
						|
    } else {
 | 
						|
        uf = 2.f * uf;
 | 
						|
    }
 | 
						|
    if (vf >= -0.5f && vf < 0.5f) {
 | 
						|
        vf = tanf(M_PI_2 * vf);
 | 
						|
    } else {
 | 
						|
        vf = 2.f * vf;
 | 
						|
    }
 | 
						|
 | 
						|
    face = u_face + 3 * v_face;
 | 
						|
 | 
						|
    switch (face) {
 | 
						|
    case TOP_LEFT:
 | 
						|
        l_x = -1.f;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z = -uf;
 | 
						|
        break;
 | 
						|
    case TOP_MIDDLE:
 | 
						|
        l_x =  uf;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z = -1.f;
 | 
						|
        break;
 | 
						|
    case TOP_RIGHT:
 | 
						|
        l_x =  1.f;
 | 
						|
        l_y = -vf;
 | 
						|
        l_z =  uf;
 | 
						|
        break;
 | 
						|
    case BOTTOM_LEFT:
 | 
						|
        l_x = -vf;
 | 
						|
        l_y = -1.f;
 | 
						|
        l_z =  uf;
 | 
						|
        break;
 | 
						|
    case BOTTOM_MIDDLE:
 | 
						|
        l_x = -vf;
 | 
						|
        l_y =  uf;
 | 
						|
        l_z =  1.f;
 | 
						|
        break;
 | 
						|
    case BOTTOM_RIGHT:
 | 
						|
        l_x = -vf;
 | 
						|
        l_y =  1.f;
 | 
						|
        l_z = -uf;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    vec[0] = l_x;
 | 
						|
    vec[1] = l_y;
 | 
						|
    vec[2] = l_z;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_eac(const V360Context *s,
 | 
						|
                       const float *vec, int width, int height,
 | 
						|
                       uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float pixel_pad = 2;
 | 
						|
    const float u_pad = pixel_pad / width;
 | 
						|
    const float v_pad = pixel_pad / height;
 | 
						|
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
    int direction, face;
 | 
						|
    int u_face, v_face;
 | 
						|
 | 
						|
    xyz_to_cube(s, vec, &uf, &vf, &direction);
 | 
						|
 | 
						|
    face = s->in_cubemap_face_order[direction];
 | 
						|
    u_face = face % 3;
 | 
						|
    v_face = face / 3;
 | 
						|
 | 
						|
    uf = M_2_PI * atanf(uf) + 0.5f;
 | 
						|
    vf = M_2_PI * atanf(vf) + 0.5f;
 | 
						|
 | 
						|
    // These formulas are inversed from eac_to_xyz ones
 | 
						|
    uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
 | 
						|
    vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
 | 
						|
 | 
						|
    uf *= width;
 | 
						|
    vf *= height;
 | 
						|
 | 
						|
    uf -= 0.5f;
 | 
						|
    vf -= 0.5f;
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare data for processing flat output format.
 | 
						|
 *
 | 
						|
 * @param ctx filter context
 | 
						|
 *
 | 
						|
 * @return error code
 | 
						|
 */
 | 
						|
static int prepare_flat_out(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
 | 
						|
    s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in flat format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void flat_to_xyz(const V360Context *s,
 | 
						|
                        int i, int j, int width, int height,
 | 
						|
                        float *vec)
 | 
						|
{
 | 
						|
    const float l_x =  s->flat_range[0] * (2.f * i / width  - 1.f);
 | 
						|
    const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f);
 | 
						|
 | 
						|
    vec[0] =  l_x;
 | 
						|
    vec[1] =  l_y;
 | 
						|
    vec[2] = -1.f;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void dfisheye_to_xyz(const V360Context *s,
 | 
						|
                            int i, int j, int width, int height,
 | 
						|
                            float *vec)
 | 
						|
{
 | 
						|
    const float scale = 1.f + s->out_pad;
 | 
						|
 | 
						|
    const float ew = width / 2.f;
 | 
						|
    const float eh = height;
 | 
						|
 | 
						|
    const int ei = i >= ew ? i - ew : i;
 | 
						|
    const float m = i >= ew ? -1.f : 1.f;
 | 
						|
 | 
						|
    const float uf = ((2.f * ei) / ew - 1.f) * scale;
 | 
						|
    const float vf = ((2.f *  j) / eh - 1.f) * scale;
 | 
						|
 | 
						|
    const float h     = hypotf(uf, vf);
 | 
						|
    const float lh    = h > 0.f ? h : 1.f;
 | 
						|
    const float theta = m * M_PI_2 * (1.f - h);
 | 
						|
 | 
						|
    const float sin_theta = sinf(theta);
 | 
						|
    const float cos_theta = cosf(theta);
 | 
						|
 | 
						|
    vec[0] = cos_theta * m * -uf / lh;
 | 
						|
    vec[1] = cos_theta *     -vf / lh;
 | 
						|
    vec[2] = sin_theta;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_dfisheye(const V360Context *s,
 | 
						|
                            const float *vec, int width, int height,
 | 
						|
                            uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float scale = 1.f - s->in_pad;
 | 
						|
 | 
						|
    const float ew = width / 2.f;
 | 
						|
    const float eh = height;
 | 
						|
 | 
						|
    const float h     = hypotf(vec[0], vec[1]);
 | 
						|
    const float lh    = h > 0.f ? h : 1.f;
 | 
						|
    const float theta = acosf(fabsf(vec[2])) / M_PI;
 | 
						|
 | 
						|
    float uf = (theta * (-vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew;
 | 
						|
    float vf = (theta * (-vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh;
 | 
						|
 | 
						|
    int ui, vi;
 | 
						|
    int u_shift;
 | 
						|
 | 
						|
    if (vec[2] >= 0.f) {
 | 
						|
        u_shift = 0;
 | 
						|
    } else {
 | 
						|
        u_shift = ceilf(ew);
 | 
						|
        uf = ew - uf;
 | 
						|
    }
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width  - 1);
 | 
						|
            vs[i + 1][j + 1] = av_clip(          vi + i, 0, height - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param i horizontal position on frame [0, width)
 | 
						|
 * @param j vertical position on frame [0, height)
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 */
 | 
						|
static void barrel_to_xyz(const V360Context *s,
 | 
						|
                          int i, int j, int width, int height,
 | 
						|
                          float *vec)
 | 
						|
{
 | 
						|
    const float scale = 0.99f;
 | 
						|
    float l_x, l_y, l_z;
 | 
						|
 | 
						|
    if (i < 4 * width / 5) {
 | 
						|
        const float theta_range = M_PI_4;
 | 
						|
 | 
						|
        const int ew = 4 * width / 5;
 | 
						|
        const int eh = height;
 | 
						|
 | 
						|
        const float phi   = ((2.f * i) / ew - 1.f) * M_PI        / scale;
 | 
						|
        const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale;
 | 
						|
 | 
						|
        const float sin_phi   = sinf(phi);
 | 
						|
        const float cos_phi   = cosf(phi);
 | 
						|
        const float sin_theta = sinf(theta);
 | 
						|
        const float cos_theta = cosf(theta);
 | 
						|
 | 
						|
        l_x =  cos_theta * sin_phi;
 | 
						|
        l_y = -sin_theta;
 | 
						|
        l_z = -cos_theta * cos_phi;
 | 
						|
    } else {
 | 
						|
        const int ew = width  / 5;
 | 
						|
        const int eh = height / 2;
 | 
						|
 | 
						|
        float uf, vf;
 | 
						|
 | 
						|
        if (j < eh) {   // UP
 | 
						|
            uf = 2.f * (i - 4 * ew) / ew  - 1.f;
 | 
						|
            vf = 2.f * (j         ) / eh - 1.f;
 | 
						|
 | 
						|
            uf /= scale;
 | 
						|
            vf /= scale;
 | 
						|
 | 
						|
            l_x =  uf;
 | 
						|
            l_y =  1.f;
 | 
						|
            l_z = -vf;
 | 
						|
        } else {            // DOWN
 | 
						|
            uf = 2.f * (i - 4 * ew) / ew - 1.f;
 | 
						|
            vf = 2.f * (j -     eh) / eh - 1.f;
 | 
						|
 | 
						|
            uf /= scale;
 | 
						|
            vf /= scale;
 | 
						|
 | 
						|
            l_x =  uf;
 | 
						|
            l_y = -1.f;
 | 
						|
            l_z =  vf;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    vec[0] = l_x;
 | 
						|
    vec[1] = l_y;
 | 
						|
    vec[2] = l_z;
 | 
						|
 | 
						|
    normalize_vector(vec);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere.
 | 
						|
 *
 | 
						|
 * @param s filter private context
 | 
						|
 * @param vec coordinates on sphere
 | 
						|
 * @param width frame width
 | 
						|
 * @param height frame height
 | 
						|
 * @param us horizontal coordinates for interpolation window
 | 
						|
 * @param vs vertical coordinates for interpolation window
 | 
						|
 * @param du horizontal relative coordinate
 | 
						|
 * @param dv vertical relative coordinate
 | 
						|
 */
 | 
						|
static void xyz_to_barrel(const V360Context *s,
 | 
						|
                          const float *vec, int width, int height,
 | 
						|
                          uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
 | 
						|
{
 | 
						|
    const float scale = 0.99f;
 | 
						|
 | 
						|
    const float phi   = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
 | 
						|
    const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
 | 
						|
    const float theta_range = M_PI_4;
 | 
						|
 | 
						|
    int ew, eh;
 | 
						|
    int u_shift, v_shift;
 | 
						|
    float uf, vf;
 | 
						|
    int ui, vi;
 | 
						|
 | 
						|
    if (theta > -theta_range && theta < theta_range) {
 | 
						|
        ew = 4 * width / 5;
 | 
						|
        eh = height;
 | 
						|
 | 
						|
        u_shift = s->ih_flip ? width / 5 : 0;
 | 
						|
        v_shift = 0;
 | 
						|
 | 
						|
        uf = (phi   / M_PI        * scale + 1.f) * ew / 2.f;
 | 
						|
        vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
 | 
						|
    } else {
 | 
						|
        ew = width  / 5;
 | 
						|
        eh = height / 2;
 | 
						|
 | 
						|
        u_shift = s->ih_flip ? 0 : 4 * ew;
 | 
						|
 | 
						|
        if (theta < 0.f) {  // UP
 | 
						|
            uf =  vec[0] / vec[1];
 | 
						|
            vf = -vec[2] / vec[1];
 | 
						|
            v_shift = 0;
 | 
						|
        } else {            // DOWN
 | 
						|
            uf = -vec[0] / vec[1];
 | 
						|
            vf = -vec[2] / vec[1];
 | 
						|
            v_shift = eh;
 | 
						|
        }
 | 
						|
 | 
						|
        uf *= s->input_mirror_modifier[0] * s->input_mirror_modifier[1];
 | 
						|
        vf *= s->input_mirror_modifier[1];
 | 
						|
 | 
						|
        uf = 0.5f * ew * (uf * scale + 1.f);
 | 
						|
        vf = 0.5f * eh * (vf * scale + 1.f);
 | 
						|
    }
 | 
						|
 | 
						|
    ui = floorf(uf);
 | 
						|
    vi = floorf(vf);
 | 
						|
 | 
						|
    *du = uf - ui;
 | 
						|
    *dv = vf - vi;
 | 
						|
 | 
						|
    for (int i = -1; i < 3; i++) {
 | 
						|
        for (int j = -1; j < 3; j++) {
 | 
						|
            us[i + 1][j + 1] = u_shift + av_clip(ui + j, 0, ew - 1);
 | 
						|
            vs[i + 1][j + 1] = v_shift + av_clip(vi + i, 0, eh - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void multiply_matrix(float c[3][3], const float a[3][3], const float b[3][3])
 | 
						|
{
 | 
						|
    for (int i = 0; i < 3; i++) {
 | 
						|
        for (int j = 0; j < 3; j++) {
 | 
						|
            float sum = 0;
 | 
						|
 | 
						|
            for (int k = 0; k < 3; k++)
 | 
						|
                sum += a[i][k] * b[k][j];
 | 
						|
 | 
						|
            c[i][j] = sum;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate rotation matrix for yaw/pitch/roll angles.
 | 
						|
 */
 | 
						|
static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
 | 
						|
                                             float rot_mat[3][3],
 | 
						|
                                             const int rotation_order[3])
 | 
						|
{
 | 
						|
    const float yaw_rad   = yaw   * M_PI / 180.f;
 | 
						|
    const float pitch_rad = pitch * M_PI / 180.f;
 | 
						|
    const float roll_rad  = roll  * M_PI / 180.f;
 | 
						|
 | 
						|
    const float sin_yaw   = sinf(-yaw_rad);
 | 
						|
    const float cos_yaw   = cosf(-yaw_rad);
 | 
						|
    const float sin_pitch = sinf(pitch_rad);
 | 
						|
    const float cos_pitch = cosf(pitch_rad);
 | 
						|
    const float sin_roll  = sinf(roll_rad);
 | 
						|
    const float cos_roll  = cosf(roll_rad);
 | 
						|
 | 
						|
    float m[3][3][3];
 | 
						|
    float temp[3][3];
 | 
						|
 | 
						|
    m[0][0][0] =  cos_yaw;  m[0][0][1] = 0;          m[0][0][2] =  sin_yaw;
 | 
						|
    m[0][1][0] =  0;        m[0][1][1] = 1;          m[0][1][2] =  0;
 | 
						|
    m[0][2][0] = -sin_yaw;  m[0][2][1] = 0;          m[0][2][2] =  cos_yaw;
 | 
						|
 | 
						|
    m[1][0][0] = 1;         m[1][0][1] = 0;          m[1][0][2] =  0;
 | 
						|
    m[1][1][0] = 0;         m[1][1][1] = cos_pitch;  m[1][1][2] = -sin_pitch;
 | 
						|
    m[1][2][0] = 0;         m[1][2][1] = sin_pitch;  m[1][2][2] =  cos_pitch;
 | 
						|
 | 
						|
    m[2][0][0] = cos_roll;  m[2][0][1] = -sin_roll;  m[2][0][2] =  0;
 | 
						|
    m[2][1][0] = sin_roll;  m[2][1][1] =  cos_roll;  m[2][1][2] =  0;
 | 
						|
    m[2][2][0] = 0;         m[2][2][1] =  0;         m[2][2][2] =  1;
 | 
						|
 | 
						|
    multiply_matrix(temp, m[rotation_order[0]], m[rotation_order[1]]);
 | 
						|
    multiply_matrix(rot_mat, temp, m[rotation_order[2]]);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Rotate vector with given rotation matrix.
 | 
						|
 *
 | 
						|
 * @param rot_mat rotation matrix
 | 
						|
 * @param vec vector
 | 
						|
 */
 | 
						|
static inline void rotate(const float rot_mat[3][3],
 | 
						|
                          float *vec)
 | 
						|
{
 | 
						|
    const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2];
 | 
						|
    const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2];
 | 
						|
    const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2];
 | 
						|
 | 
						|
    vec[0] = x_tmp;
 | 
						|
    vec[1] = y_tmp;
 | 
						|
    vec[2] = z_tmp;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
 | 
						|
                                       float *modifier)
 | 
						|
{
 | 
						|
    modifier[0] = h_flip ? -1.f : 1.f;
 | 
						|
    modifier[1] = v_flip ? -1.f : 1.f;
 | 
						|
    modifier[2] = d_flip ? -1.f : 1.f;
 | 
						|
}
 | 
						|
 | 
						|
static inline void mirror(const float *modifier, float *vec)
 | 
						|
{
 | 
						|
    vec[0] *= modifier[0];
 | 
						|
    vec[1] *= modifier[1];
 | 
						|
    vec[2] *= modifier[2];
 | 
						|
}
 | 
						|
 | 
						|
static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int p)
 | 
						|
{
 | 
						|
    s->u[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
 | 
						|
    s->v[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
 | 
						|
    if (!s->u[p] || !s->v[p])
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    if (sizeof_ker) {
 | 
						|
        s->ker[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_ker);
 | 
						|
        if (!s->ker[p])
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void fov_from_dfov(V360Context *s, float w, float h)
 | 
						|
{
 | 
						|
    const float da = tanf(0.5 * FFMIN(s->d_fov, 359.f) * M_PI / 180.f);
 | 
						|
    const float d = hypotf(w, h);
 | 
						|
 | 
						|
    s->h_fov = atan2f(da * w, d) * 360.f / M_PI;
 | 
						|
    s->v_fov = atan2f(da * h, d) * 360.f / M_PI;
 | 
						|
 | 
						|
    if (s->h_fov < 0.f)
 | 
						|
        s->h_fov += 360.f;
 | 
						|
    if (s->v_fov < 0.f)
 | 
						|
        s->v_fov += 360.f;
 | 
						|
}
 | 
						|
 | 
						|
static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
 | 
						|
{
 | 
						|
    outw[1] = outw[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
 | 
						|
    outw[0] = outw[3] = w;
 | 
						|
    outh[1] = outh[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
 | 
						|
    outh[0] = outh[3] = h;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate remap data
 | 
						|
static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    for (int p = 0; p < s->nb_allocated; p++) {
 | 
						|
        const int width = s->pr_width[p];
 | 
						|
        const int uv_linesize = s->uv_linesize[p];
 | 
						|
        const int height = s->pr_height[p];
 | 
						|
        const int in_width = s->inplanewidth[p];
 | 
						|
        const int in_height = s->inplaneheight[p];
 | 
						|
        const int slice_start = (height *  jobnr     ) / nb_jobs;
 | 
						|
        const int slice_end   = (height * (jobnr + 1)) / nb_jobs;
 | 
						|
        float du, dv;
 | 
						|
        float vec[3];
 | 
						|
        XYRemap rmap;
 | 
						|
 | 
						|
        for (int j = slice_start; j < slice_end; j++) {
 | 
						|
            for (int i = 0; i < width; i++) {
 | 
						|
                uint16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
 | 
						|
                uint16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
 | 
						|
                int16_t *ker = s->ker[p] + (j * uv_linesize + i) * s->elements;
 | 
						|
 | 
						|
                if (s->out_transpose)
 | 
						|
                    s->out_transform(s, j, i, height, width, vec);
 | 
						|
                else
 | 
						|
                    s->out_transform(s, i, j, width, height, vec);
 | 
						|
                av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
 | 
						|
                rotate(s->rot_mat, vec);
 | 
						|
                av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
 | 
						|
                normalize_vector(vec);
 | 
						|
                mirror(s->output_mirror_modifier, vec);
 | 
						|
                if (s->in_transpose)
 | 
						|
                    s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv);
 | 
						|
                else
 | 
						|
                    s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv);
 | 
						|
                av_assert1(!isnan(du) && !isnan(dv));
 | 
						|
                s->calculate_kernel(du, dv, &rmap, u, v, ker);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int config_output(AVFilterLink *outlink)
 | 
						|
{
 | 
						|
    AVFilterContext *ctx = outlink->src;
 | 
						|
    AVFilterLink *inlink = ctx->inputs[0];
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | 
						|
    const int depth = desc->comp[0].depth;
 | 
						|
    int sizeof_uv;
 | 
						|
    int sizeof_ker;
 | 
						|
    int err;
 | 
						|
    int h, w;
 | 
						|
    int in_offset_h, in_offset_w;
 | 
						|
    int out_offset_h, out_offset_w;
 | 
						|
    float hf, wf;
 | 
						|
    int (*prepare_out)(AVFilterContext *ctx);
 | 
						|
 | 
						|
    s->input_mirror_modifier[0] = s->ih_flip ? -1.f : 1.f;
 | 
						|
    s->input_mirror_modifier[1] = s->iv_flip ? -1.f : 1.f;
 | 
						|
 | 
						|
    switch (s->interp) {
 | 
						|
    case NEAREST:
 | 
						|
        s->calculate_kernel = nearest_kernel;
 | 
						|
        s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
 | 
						|
        s->elements = 1;
 | 
						|
        sizeof_uv = sizeof(uint16_t) * s->elements;
 | 
						|
        sizeof_ker = 0;
 | 
						|
        break;
 | 
						|
    case BILINEAR:
 | 
						|
        s->calculate_kernel = bilinear_kernel;
 | 
						|
        s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
 | 
						|
        s->elements = 2 * 2;
 | 
						|
        sizeof_uv = sizeof(uint16_t) * s->elements;
 | 
						|
        sizeof_ker = sizeof(uint16_t) * s->elements;
 | 
						|
        break;
 | 
						|
    case BICUBIC:
 | 
						|
        s->calculate_kernel = bicubic_kernel;
 | 
						|
        s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | 
						|
        s->elements = 4 * 4;
 | 
						|
        sizeof_uv = sizeof(uint16_t) * s->elements;
 | 
						|
        sizeof_ker = sizeof(uint16_t) * s->elements;
 | 
						|
        break;
 | 
						|
    case LANCZOS:
 | 
						|
        s->calculate_kernel = lanczos_kernel;
 | 
						|
        s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
 | 
						|
        s->elements = 4 * 4;
 | 
						|
        sizeof_uv = sizeof(uint16_t) * s->elements;
 | 
						|
        sizeof_ker = sizeof(uint16_t) * s->elements;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    ff_v360_init(s, depth);
 | 
						|
 | 
						|
    for (int order = 0; order < NB_RORDERS; order++) {
 | 
						|
        const char c = s->rorder[order];
 | 
						|
        int rorder;
 | 
						|
 | 
						|
        if (c == '\0') {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incomplete rorder option. Direction for all 3 rotation orders should be specified.\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        rorder = get_rorder(c);
 | 
						|
        if (rorder == -1) {
 | 
						|
            av_log(ctx, AV_LOG_ERROR,
 | 
						|
                   "Incorrect rotation order symbol '%c' in rorder option.\n", c);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        s->rotation_order[order] = rorder;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (s->in_stereo) {
 | 
						|
    case STEREO_2D:
 | 
						|
        w = inlink->w;
 | 
						|
        h = inlink->h;
 | 
						|
        in_offset_w = in_offset_h = 0;
 | 
						|
        break;
 | 
						|
    case STEREO_SBS:
 | 
						|
        w = inlink->w / 2;
 | 
						|
        h = inlink->h;
 | 
						|
        in_offset_w = w;
 | 
						|
        in_offset_h = 0;
 | 
						|
        break;
 | 
						|
    case STEREO_TB:
 | 
						|
        w = inlink->w;
 | 
						|
        h = inlink->h / 2;
 | 
						|
        in_offset_w = 0;
 | 
						|
        in_offset_h = h;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
 | 
						|
    set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
 | 
						|
 | 
						|
    s->in_width = s->inplanewidth[0];
 | 
						|
    s->in_height = s->inplaneheight[0];
 | 
						|
 | 
						|
    if (s->in_transpose)
 | 
						|
        FFSWAP(int, s->in_width, s->in_height);
 | 
						|
 | 
						|
    switch (s->in) {
 | 
						|
    case EQUIRECTANGULAR:
 | 
						|
        s->in_transform = xyz_to_equirect;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    case CUBEMAP_3_2:
 | 
						|
        s->in_transform = xyz_to_cube3x2;
 | 
						|
        err = prepare_cube_in(ctx);
 | 
						|
        wf = w / 3.f * 4.f;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    case CUBEMAP_1_6:
 | 
						|
        s->in_transform = xyz_to_cube1x6;
 | 
						|
        err = prepare_cube_in(ctx);
 | 
						|
        wf = w * 4.f;
 | 
						|
        hf = h / 3.f;
 | 
						|
        break;
 | 
						|
    case CUBEMAP_6_1:
 | 
						|
        s->in_transform = xyz_to_cube6x1;
 | 
						|
        err = prepare_cube_in(ctx);
 | 
						|
        wf = w / 3.f * 2.f;
 | 
						|
        hf = h * 2.f;
 | 
						|
        break;
 | 
						|
    case EQUIANGULAR:
 | 
						|
        s->in_transform = xyz_to_eac;
 | 
						|
        err = prepare_eac_in(ctx);
 | 
						|
        wf = w;
 | 
						|
        hf = h / 9.f * 8.f;
 | 
						|
        break;
 | 
						|
    case FLAT:
 | 
						|
        av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    case DUAL_FISHEYE:
 | 
						|
        s->in_transform = xyz_to_dfisheye;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    case BARREL:
 | 
						|
        s->in_transform = xyz_to_barrel;
 | 
						|
        err = 0;
 | 
						|
        wf = w / 5.f * 4.f;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    case STEREOGRAPHIC:
 | 
						|
        s->in_transform = xyz_to_stereographic;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h / 2.f;
 | 
						|
        break;
 | 
						|
    case MERCATOR:
 | 
						|
        s->in_transform = xyz_to_mercator;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h / 2.f;
 | 
						|
        break;
 | 
						|
    case BALL:
 | 
						|
        s->in_transform = xyz_to_ball;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h / 2.f;
 | 
						|
        break;
 | 
						|
    case HAMMER:
 | 
						|
        s->in_transform = xyz_to_hammer;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    case SINUSOIDAL:
 | 
						|
        s->in_transform = xyz_to_sinusoidal;
 | 
						|
        err = 0;
 | 
						|
        wf = w;
 | 
						|
        hf = h;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
 | 
						|
        return AVERROR_BUG;
 | 
						|
    }
 | 
						|
 | 
						|
    if (err != 0) {
 | 
						|
        return err;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (s->out) {
 | 
						|
    case EQUIRECTANGULAR:
 | 
						|
        s->out_transform = equirect_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case CUBEMAP_3_2:
 | 
						|
        s->out_transform = cube3x2_to_xyz;
 | 
						|
        prepare_out = prepare_cube_out;
 | 
						|
        w = roundf(wf / 4.f * 3.f);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case CUBEMAP_1_6:
 | 
						|
        s->out_transform = cube1x6_to_xyz;
 | 
						|
        prepare_out = prepare_cube_out;
 | 
						|
        w = roundf(wf / 4.f);
 | 
						|
        h = roundf(hf * 3.f);
 | 
						|
        break;
 | 
						|
    case CUBEMAP_6_1:
 | 
						|
        s->out_transform = cube6x1_to_xyz;
 | 
						|
        prepare_out = prepare_cube_out;
 | 
						|
        w = roundf(wf / 2.f * 3.f);
 | 
						|
        h = roundf(hf / 2.f);
 | 
						|
        break;
 | 
						|
    case EQUIANGULAR:
 | 
						|
        s->out_transform = eac_to_xyz;
 | 
						|
        prepare_out = prepare_eac_out;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf / 8.f * 9.f);
 | 
						|
        break;
 | 
						|
    case FLAT:
 | 
						|
        s->out_transform = flat_to_xyz;
 | 
						|
        prepare_out = prepare_flat_out;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case DUAL_FISHEYE:
 | 
						|
        s->out_transform = dfisheye_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case BARREL:
 | 
						|
        s->out_transform = barrel_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf / 4.f * 5.f);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case STEREOGRAPHIC:
 | 
						|
        s->out_transform = stereographic_to_xyz;
 | 
						|
        prepare_out = prepare_stereographic_out;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf * 2.f);
 | 
						|
        break;
 | 
						|
    case MERCATOR:
 | 
						|
        s->out_transform = mercator_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf * 2.f);
 | 
						|
        break;
 | 
						|
    case BALL:
 | 
						|
        s->out_transform = ball_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf * 2.f);
 | 
						|
        break;
 | 
						|
    case HAMMER:
 | 
						|
        s->out_transform = hammer_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    case SINUSOIDAL:
 | 
						|
        s->out_transform = sinusoidal_to_xyz;
 | 
						|
        prepare_out = NULL;
 | 
						|
        w = roundf(wf);
 | 
						|
        h = roundf(hf);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
 | 
						|
        return AVERROR_BUG;
 | 
						|
    }
 | 
						|
 | 
						|
    // Override resolution with user values if specified
 | 
						|
    if (s->width > 0 && s->height > 0) {
 | 
						|
        w = s->width;
 | 
						|
        h = s->height;
 | 
						|
    } else if (s->width > 0 || s->height > 0) {
 | 
						|
        av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    } else {
 | 
						|
        if (s->out_transpose)
 | 
						|
            FFSWAP(int, w, h);
 | 
						|
 | 
						|
        if (s->in_transpose)
 | 
						|
            FFSWAP(int, w, h);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->d_fov > 0.f)
 | 
						|
        fov_from_dfov(s, w, h);
 | 
						|
 | 
						|
    if (prepare_out) {
 | 
						|
        err = prepare_out(ctx);
 | 
						|
        if (err != 0)
 | 
						|
            return err;
 | 
						|
    }
 | 
						|
 | 
						|
    set_dimensions(s->pr_width, s->pr_height, w, h, desc);
 | 
						|
 | 
						|
    s->out_width = s->pr_width[0];
 | 
						|
    s->out_height = s->pr_height[0];
 | 
						|
 | 
						|
    if (s->out_transpose)
 | 
						|
        FFSWAP(int, s->out_width, s->out_height);
 | 
						|
 | 
						|
    switch (s->out_stereo) {
 | 
						|
    case STEREO_2D:
 | 
						|
        out_offset_w = out_offset_h = 0;
 | 
						|
        break;
 | 
						|
    case STEREO_SBS:
 | 
						|
        out_offset_w = w;
 | 
						|
        out_offset_h = 0;
 | 
						|
        w *= 2;
 | 
						|
        break;
 | 
						|
    case STEREO_TB:
 | 
						|
        out_offset_w = 0;
 | 
						|
        out_offset_h = h;
 | 
						|
        h *= 2;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc);
 | 
						|
    set_dimensions(s->planewidth, s->planeheight, w, h, desc);
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i++)
 | 
						|
        s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8);
 | 
						|
 | 
						|
    outlink->h = h;
 | 
						|
    outlink->w = w;
 | 
						|
 | 
						|
    s->nb_planes = av_pix_fmt_count_planes(inlink->format);
 | 
						|
 | 
						|
    if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) {
 | 
						|
        s->nb_allocated = 1;
 | 
						|
        s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
 | 
						|
    } else {
 | 
						|
        s->nb_allocated = 2;
 | 
						|
        s->map[0] = 0;
 | 
						|
        s->map[1] = s->map[2] = 1;
 | 
						|
        s->map[3] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < s->nb_allocated; i++)
 | 
						|
        allocate_plane(s, sizeof_uv, sizeof_ker, i);
 | 
						|
 | 
						|
    calculate_rotation_matrix(s->yaw, s->pitch, s->roll, s->rot_mat, s->rotation_order);
 | 
						|
    set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
 | 
						|
 | 
						|
    ctx->internal->execute(ctx, v360_slice, NULL, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | 
						|
{
 | 
						|
    AVFilterContext *ctx = inlink->dst;
 | 
						|
    AVFilterLink *outlink = ctx->outputs[0];
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
    AVFrame *out;
 | 
						|
    ThreadData td;
 | 
						|
 | 
						|
    out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | 
						|
    if (!out) {
 | 
						|
        av_frame_free(&in);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
    av_frame_copy_props(out, in);
 | 
						|
 | 
						|
    td.in = in;
 | 
						|
    td.out = out;
 | 
						|
 | 
						|
    ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | 
						|
 | 
						|
    av_frame_free(&in);
 | 
						|
    return ff_filter_frame(outlink, out);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void uninit(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    V360Context *s = ctx->priv;
 | 
						|
 | 
						|
    for (int p = 0; p < s->nb_allocated; p++) {
 | 
						|
        av_freep(&s->u[p]);
 | 
						|
        av_freep(&s->v[p]);
 | 
						|
        av_freep(&s->ker[p]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const AVFilterPad inputs[] = {
 | 
						|
    {
 | 
						|
        .name         = "default",
 | 
						|
        .type         = AVMEDIA_TYPE_VIDEO,
 | 
						|
        .filter_frame = filter_frame,
 | 
						|
    },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
static const AVFilterPad outputs[] = {
 | 
						|
    {
 | 
						|
        .name         = "default",
 | 
						|
        .type         = AVMEDIA_TYPE_VIDEO,
 | 
						|
        .config_props = config_output,
 | 
						|
    },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
AVFilter ff_vf_v360 = {
 | 
						|
    .name          = "v360",
 | 
						|
    .description   = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
 | 
						|
    .priv_size     = sizeof(V360Context),
 | 
						|
    .uninit        = uninit,
 | 
						|
    .query_formats = query_formats,
 | 
						|
    .inputs        = inputs,
 | 
						|
    .outputs       = outputs,
 | 
						|
    .priv_class    = &v360_class,
 | 
						|
    .flags         = AVFILTER_FLAG_SLICE_THREADS,
 | 
						|
};
 |