Since commit 4fc2531fff112836026aad2bdaf128c9d15a72e3 opus.c contains only the celt stuff shared between decoder and encoder. meanwhile, opus_celt.c is decoder-only. So the new names reflect the actual content better than the current ones. Reviewed-by: Lynne <dev@lynne.ee> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
		
			
				
	
	
		
			485 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			485 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2012 Andrew D'Addesio
 | 
						|
 * Copyright (c) 2013-2014 Mozilla Corporation
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include "opus_celt.h"
 | 
						|
#include "opus_pvq.h"
 | 
						|
#include "opustab.h"
 | 
						|
 | 
						|
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    float lowband_scratch[8 * 22];
 | 
						|
    float norm1[2 * 8 * 100];
 | 
						|
    float *norm2 = norm1 + 8 * 100;
 | 
						|
 | 
						|
    int totalbits = (f->framebits << 3) - f->anticollapse_needed;
 | 
						|
 | 
						|
    int update_lowband = 1;
 | 
						|
    int lowband_offset = 0;
 | 
						|
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
 | 
						|
        int band_offset = ff_celt_freq_bands[i] << f->size;
 | 
						|
        int band_size   = ff_celt_freq_range[i] << f->size;
 | 
						|
        float *X = f->block[0].coeffs + band_offset;
 | 
						|
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
 | 
						|
        float *norm_loc1, *norm_loc2;
 | 
						|
 | 
						|
        int consumed = opus_rc_tell_frac(rc);
 | 
						|
        int effective_lowband = -1;
 | 
						|
        int b = 0;
 | 
						|
 | 
						|
        /* Compute how many bits we want to allocate to this band */
 | 
						|
        if (i != f->start_band)
 | 
						|
            f->remaining -= consumed;
 | 
						|
        f->remaining2 = totalbits - consumed - 1;
 | 
						|
        if (i <= f->coded_bands - 1) {
 | 
						|
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
 | 
						|
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
 | 
						|
        }
 | 
						|
 | 
						|
        if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
 | 
						|
            i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
 | 
						|
            lowband_offset = i;
 | 
						|
 | 
						|
        if (i == f->start_band + 1) {
 | 
						|
            /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
 | 
						|
            the second to ensure the second band never has to use the LCG. */
 | 
						|
            int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
 | 
						|
 | 
						|
            memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
 | 
						|
 | 
						|
            if (f->channels == 2)
 | 
						|
                memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
 | 
						|
        }
 | 
						|
 | 
						|
        /* Get a conservative estimate of the collapse_mask's for the bands we're
 | 
						|
           going to be folding from. */
 | 
						|
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
 | 
						|
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
 | 
						|
            int foldstart, foldend;
 | 
						|
 | 
						|
            /* This ensures we never repeat spectral content within one band */
 | 
						|
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
 | 
						|
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
 | 
						|
            foldstart = lowband_offset;
 | 
						|
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
 | 
						|
            foldend = lowband_offset - 1;
 | 
						|
            while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
 | 
						|
 | 
						|
            cm[0] = cm[1] = 0;
 | 
						|
            for (j = foldstart; j < foldend; j++) {
 | 
						|
                cm[0] |= f->block[0].collapse_masks[j];
 | 
						|
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (f->dual_stereo && i == f->intensity_stereo) {
 | 
						|
            /* Switch off dual stereo to do intensity */
 | 
						|
            f->dual_stereo = 0;
 | 
						|
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
 | 
						|
                norm1[j] = (norm1[j] + norm2[j]) / 2;
 | 
						|
        }
 | 
						|
 | 
						|
        norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
 | 
						|
        norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
 | 
						|
 | 
						|
        if (f->dual_stereo) {
 | 
						|
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
 | 
						|
                                       f->blocks, norm_loc1, f->size,
 | 
						|
                                       norm1 + band_offset, 0, 1.0f,
 | 
						|
                                       lowband_scratch, cm[0]);
 | 
						|
 | 
						|
            cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
 | 
						|
                                       f->blocks, norm_loc2, f->size,
 | 
						|
                                       norm2 + band_offset, 0, 1.0f,
 | 
						|
                                       lowband_scratch, cm[1]);
 | 
						|
        } else {
 | 
						|
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
 | 
						|
                                       f->blocks, norm_loc1, f->size,
 | 
						|
                                       norm1 + band_offset, 0, 1.0f,
 | 
						|
                                       lowband_scratch, cm[0] | cm[1]);
 | 
						|
            cm[1] = cm[0];
 | 
						|
        }
 | 
						|
 | 
						|
        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
 | 
						|
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | 
						|
        f->remaining += f->pulses[i] + consumed;
 | 
						|
 | 
						|
        /* Update the folding position only as long as we have 1 bit/sample depth */
 | 
						|
        update_lowband = (b > band_size << 3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
 | 
						|
 | 
						|
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
 | 
						|
{
 | 
						|
    int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
 | 
						|
    int skip_startband      = f->start_band;
 | 
						|
    int skip_bit            = 0;
 | 
						|
    int intensitystereo_bit = 0;
 | 
						|
    int dualstereo_bit      = 0;
 | 
						|
    int dynalloc            = 6;
 | 
						|
    int extrabits           = 0;
 | 
						|
 | 
						|
    int boost[CELT_MAX_BANDS] = { 0 };
 | 
						|
    int trim_offset[CELT_MAX_BANDS];
 | 
						|
    int threshold[CELT_MAX_BANDS];
 | 
						|
    int bits1[CELT_MAX_BANDS];
 | 
						|
    int bits2[CELT_MAX_BANDS];
 | 
						|
 | 
						|
    /* Spread */
 | 
						|
    if (opus_rc_tell(rc) + 4 <= f->framebits) {
 | 
						|
        if (encode)
 | 
						|
            ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
 | 
						|
        else
 | 
						|
            f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
 | 
						|
    } else {
 | 
						|
        f->spread = CELT_SPREAD_NORMAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialize static allocation caps */
 | 
						|
    for (i = 0; i < CELT_MAX_BANDS; i++)
 | 
						|
        f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
 | 
						|
 | 
						|
    /* Band boosts */
 | 
						|
    tbits_8ths = f->framebits << 3;
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
 | 
						|
        int b_dynalloc = dynalloc;
 | 
						|
        int boost_amount = f->alloc_boost[i];
 | 
						|
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | 
						|
 | 
						|
        while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
 | 
						|
            int is_boost;
 | 
						|
            if (encode) {
 | 
						|
                is_boost = boost_amount--;
 | 
						|
                ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
 | 
						|
            } else {
 | 
						|
                is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
 | 
						|
            }
 | 
						|
 | 
						|
            if (!is_boost)
 | 
						|
                break;
 | 
						|
 | 
						|
            boost[i]   += quanta;
 | 
						|
            tbits_8ths -= quanta;
 | 
						|
 | 
						|
            b_dynalloc = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (boost[i])
 | 
						|
            dynalloc = FFMAX(dynalloc - 1, 2);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Allocation trim */
 | 
						|
    if (!encode)
 | 
						|
        f->alloc_trim = 5;
 | 
						|
    if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
 | 
						|
        if (encode)
 | 
						|
            ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
 | 
						|
        else
 | 
						|
            f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
 | 
						|
 | 
						|
    /* Anti-collapse bit reservation */
 | 
						|
    tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | 
						|
    f->anticollapse_needed = 0;
 | 
						|
    if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
 | 
						|
        f->anticollapse_needed = 1 << 3;
 | 
						|
    tbits_8ths -= f->anticollapse_needed;
 | 
						|
 | 
						|
    /* Band skip bit reservation */
 | 
						|
    if (tbits_8ths >= 1 << 3)
 | 
						|
        skip_bit = 1 << 3;
 | 
						|
    tbits_8ths -= skip_bit;
 | 
						|
 | 
						|
    /* Intensity/dual stereo bit reservation */
 | 
						|
    if (f->channels == 2) {
 | 
						|
        intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
 | 
						|
        if (intensitystereo_bit <= tbits_8ths) {
 | 
						|
            tbits_8ths -= intensitystereo_bit;
 | 
						|
            if (tbits_8ths >= 1 << 3) {
 | 
						|
                dualstereo_bit = 1 << 3;
 | 
						|
                tbits_8ths -= 1 << 3;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            intensitystereo_bit = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Trim offsets */
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int trim     = f->alloc_trim - 5 - f->size;
 | 
						|
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
 | 
						|
        int duration = f->size + 3;
 | 
						|
        int scale    = duration + f->channels - 1;
 | 
						|
 | 
						|
        /* PVQ minimum allocation threshold, below this value the band is
 | 
						|
         * skipped */
 | 
						|
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
 | 
						|
                             f->channels << 3);
 | 
						|
 | 
						|
        trim_offset[i] = trim * (band << scale) >> 6;
 | 
						|
 | 
						|
        if (ff_celt_freq_range[i] << f->size == 1)
 | 
						|
            trim_offset[i] -= f->channels << 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    low  = 1;
 | 
						|
    high = CELT_VECTORS - 1;
 | 
						|
    while (low <= high) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
            bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
 | 
						|
 | 
						|
            if (bandbits)
 | 
						|
                bandbits = FFMAX(bandbits + trim_offset[i], 0);
 | 
						|
            bandbits += boost[i];
 | 
						|
 | 
						|
            if (bandbits >= threshold[i] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, f->caps[i]);
 | 
						|
            } else if (bandbits >= f->channels << 3) {
 | 
						|
                total += f->channels << 3;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (total > tbits_8ths)
 | 
						|
            high = center - 1;
 | 
						|
        else
 | 
						|
            low = center + 1;
 | 
						|
    }
 | 
						|
    high = low--;
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
 | 
						|
        bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
 | 
						|
                   NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
 | 
						|
 | 
						|
        if (bits1[i])
 | 
						|
            bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
 | 
						|
        if (bits2[i])
 | 
						|
            bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
 | 
						|
 | 
						|
        if (low)
 | 
						|
            bits1[i] += boost[i];
 | 
						|
        bits2[i] += boost[i];
 | 
						|
 | 
						|
        if (boost[i])
 | 
						|
            skip_startband = i;
 | 
						|
        bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    low  = 0;
 | 
						|
    high = 1 << CELT_ALLOC_STEPS;
 | 
						|
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (j = f->end_band - 1; j >= f->start_band; j--) {
 | 
						|
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
            if (bandbits >= threshold[j] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, f->caps[j]);
 | 
						|
            } else if (bandbits >= f->channels << 3)
 | 
						|
                total += f->channels << 3;
 | 
						|
        }
 | 
						|
        if (total > tbits_8ths)
 | 
						|
            high = center;
 | 
						|
        else
 | 
						|
            low = center;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    done = total = 0;
 | 
						|
    for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
        if (bandbits >= threshold[i] || done)
 | 
						|
            done = 1;
 | 
						|
        else
 | 
						|
            bandbits = (bandbits >= f->channels << 3) ?
 | 
						|
            f->channels << 3 : 0;
 | 
						|
 | 
						|
        bandbits     = FFMIN(bandbits, f->caps[i]);
 | 
						|
        f->pulses[i] = bandbits;
 | 
						|
        total      += bandbits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Band skipping */
 | 
						|
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
 | 
						|
        int allocation;
 | 
						|
        j = f->coded_bands - 1;
 | 
						|
 | 
						|
        if (j == skip_startband) {
 | 
						|
            /* all remaining bands are not skipped */
 | 
						|
            tbits_8ths += skip_bit;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* determine the number of bits available for coding "do not skip" markers */
 | 
						|
        remaining   = tbits_8ths - total;
 | 
						|
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
 | 
						|
        allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
 | 
						|
 | 
						|
        /* a "do not skip" marker is only coded if the allocation is
 | 
						|
         * above the chosen threshold */
 | 
						|
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
 | 
						|
            int do_not_skip;
 | 
						|
            if (encode) {
 | 
						|
                do_not_skip = f->coded_bands <= f->skip_band_floor;
 | 
						|
                ff_opus_rc_enc_log(rc, do_not_skip, 1);
 | 
						|
            } else {
 | 
						|
                do_not_skip = ff_opus_rc_dec_log(rc, 1);
 | 
						|
            }
 | 
						|
 | 
						|
            if (do_not_skip)
 | 
						|
                break;
 | 
						|
 | 
						|
            total      += 1 << 3;
 | 
						|
            allocation -= 1 << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        /* the band is skipped, so reclaim its bits */
 | 
						|
        total -= f->pulses[j];
 | 
						|
        if (intensitystereo_bit) {
 | 
						|
            total -= intensitystereo_bit;
 | 
						|
            intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
 | 
						|
            total += intensitystereo_bit;
 | 
						|
        }
 | 
						|
 | 
						|
        total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* IS start band */
 | 
						|
    if (encode) {
 | 
						|
        if (intensitystereo_bit) {
 | 
						|
            f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
 | 
						|
            ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        f->intensity_stereo = f->dual_stereo = 0;
 | 
						|
        if (intensitystereo_bit)
 | 
						|
            f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
 | 
						|
    }
 | 
						|
 | 
						|
    /* DS flag */
 | 
						|
    if (f->intensity_stereo <= f->start_band)
 | 
						|
        tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
 | 
						|
    else if (dualstereo_bit)
 | 
						|
        if (encode)
 | 
						|
            ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
 | 
						|
        else
 | 
						|
            f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
 | 
						|
 | 
						|
    /* Supply the remaining bits in this frame to lower bands */
 | 
						|
    remaining = tbits_8ths - total;
 | 
						|
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
 | 
						|
        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
 | 
						|
        remaining    -= bits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Finally determine the allocation */
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        int N = ff_celt_freq_range[i] << f->size;
 | 
						|
        int prev_extra = extrabits;
 | 
						|
        f->pulses[i] += extrabits;
 | 
						|
 | 
						|
        if (N > 1) {
 | 
						|
            int dof;        /* degrees of freedom */
 | 
						|
            int temp;       /* dof * channels * log(dof) */
 | 
						|
            int fine_bits;
 | 
						|
            int max_bits;
 | 
						|
            int offset;     /* fine energy quantization offset, i.e.
 | 
						|
                             * extra bits assigned over the standard
 | 
						|
                             * totalbits/dof */
 | 
						|
 | 
						|
            extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
 | 
						|
            /* intensity stereo makes use of an extra degree of freedom */
 | 
						|
            dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
 | 
						|
            temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
 | 
						|
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | 
						|
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | 
						|
                offset += dof << 1;
 | 
						|
 | 
						|
            /* grant an additional bias for the first and second pulses */
 | 
						|
            if (f->pulses[i] + offset < 2 * (dof << 3))
 | 
						|
                offset += temp >> 2;
 | 
						|
            else if (f->pulses[i] + offset < 3 * (dof << 3))
 | 
						|
                offset += temp >> 3;
 | 
						|
 | 
						|
            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | 
						|
            max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
 | 
						|
            max_bits  = FFMAX(max_bits, 0);
 | 
						|
            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | 
						|
 | 
						|
            /* If fine_bits was rounded down or capped,
 | 
						|
             * give priority for the final fine energy pass */
 | 
						|
            f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
 | 
						|
 | 
						|
            /* the remaining bits are assigned to PVQ */
 | 
						|
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
 | 
						|
        } else {
 | 
						|
            /* all bits go to fine energy except for the sign bit */
 | 
						|
            extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
            f->fine_bits[i] = 0;
 | 
						|
            f->fine_priority[i] = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* hand back a limited number of extra fine energy bits to this band */
 | 
						|
        if (extrabits > 0) {
 | 
						|
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
 | 
						|
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
 | 
						|
            f->fine_bits[i] += fineextra;
 | 
						|
 | 
						|
            fineextra <<= f->channels + 2;
 | 
						|
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | 
						|
            extrabits -= fineextra;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    f->remaining = extrabits;
 | 
						|
 | 
						|
    /* skipped bands dedicate all of their bits for fine energy */
 | 
						|
    for (; i < f->end_band; i++) {
 | 
						|
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
 | 
						|
        f->pulses[i]        = 0;
 | 
						|
        f->fine_priority[i] = f->fine_bits[i] < 1;
 | 
						|
    }
 | 
						|
}
 |