353 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * FFT/IFFT transforms
 | 
						|
 * Copyright (c) 2008 Loren Merritt
 | 
						|
 * Copyright (c) 2002 Fabrice Bellard
 | 
						|
 * Partly based on libdjbfft by D. J. Bernstein
 | 
						|
 *
 | 
						|
 * This file is part of Libav.
 | 
						|
 *
 | 
						|
 * Libav is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libav is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with Libav; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * FFT/IFFT transforms.
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include "libavutil/mathematics.h"
 | 
						|
#include "fft.h"
 | 
						|
#include "fft-internal.h"
 | 
						|
 | 
						|
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
 | 
						|
#if !CONFIG_HARDCODED_TABLES
 | 
						|
COSTABLE(16);
 | 
						|
COSTABLE(32);
 | 
						|
COSTABLE(64);
 | 
						|
COSTABLE(128);
 | 
						|
COSTABLE(256);
 | 
						|
COSTABLE(512);
 | 
						|
COSTABLE(1024);
 | 
						|
COSTABLE(2048);
 | 
						|
COSTABLE(4096);
 | 
						|
COSTABLE(8192);
 | 
						|
COSTABLE(16384);
 | 
						|
COSTABLE(32768);
 | 
						|
COSTABLE(65536);
 | 
						|
#endif
 | 
						|
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
 | 
						|
    NULL, NULL, NULL, NULL,
 | 
						|
    FFT_NAME(ff_cos_16),
 | 
						|
    FFT_NAME(ff_cos_32),
 | 
						|
    FFT_NAME(ff_cos_64),
 | 
						|
    FFT_NAME(ff_cos_128),
 | 
						|
    FFT_NAME(ff_cos_256),
 | 
						|
    FFT_NAME(ff_cos_512),
 | 
						|
    FFT_NAME(ff_cos_1024),
 | 
						|
    FFT_NAME(ff_cos_2048),
 | 
						|
    FFT_NAME(ff_cos_4096),
 | 
						|
    FFT_NAME(ff_cos_8192),
 | 
						|
    FFT_NAME(ff_cos_16384),
 | 
						|
    FFT_NAME(ff_cos_32768),
 | 
						|
    FFT_NAME(ff_cos_65536),
 | 
						|
};
 | 
						|
 | 
						|
static void fft_permute_c(FFTContext *s, FFTComplex *z);
 | 
						|
static void fft_calc_c(FFTContext *s, FFTComplex *z);
 | 
						|
 | 
						|
static int split_radix_permutation(int i, int n, int inverse)
 | 
						|
{
 | 
						|
    int m;
 | 
						|
    if(n <= 2) return i&1;
 | 
						|
    m = n >> 1;
 | 
						|
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
 | 
						|
    m >>= 1;
 | 
						|
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
 | 
						|
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
 | 
						|
}
 | 
						|
 | 
						|
av_cold void ff_init_ff_cos_tabs(int index)
 | 
						|
{
 | 
						|
#if !CONFIG_HARDCODED_TABLES
 | 
						|
    int i;
 | 
						|
    int m = 1<<index;
 | 
						|
    double freq = 2*M_PI/m;
 | 
						|
    FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
 | 
						|
    for(i=0; i<=m/4; i++)
 | 
						|
        tab[i] = FIX15(cos(i*freq));
 | 
						|
    for(i=1; i<m/4; i++)
 | 
						|
        tab[m/2-i] = tab[i];
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const int avx_tab[] = {
 | 
						|
    0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
 | 
						|
};
 | 
						|
 | 
						|
static int is_second_half_of_fft32(int i, int n)
 | 
						|
{
 | 
						|
    if (n <= 32)
 | 
						|
        return i >= 16;
 | 
						|
    else if (i < n/2)
 | 
						|
        return is_second_half_of_fft32(i, n/2);
 | 
						|
    else if (i < 3*n/4)
 | 
						|
        return is_second_half_of_fft32(i - n/2, n/4);
 | 
						|
    else
 | 
						|
        return is_second_half_of_fft32(i - 3*n/4, n/4);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void fft_perm_avx(FFTContext *s)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int n = 1 << s->nbits;
 | 
						|
 | 
						|
    for (i = 0; i < n; i += 16) {
 | 
						|
        int k;
 | 
						|
        if (is_second_half_of_fft32(i, n)) {
 | 
						|
            for (k = 0; k < 16; k++)
 | 
						|
                s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
 | 
						|
                    i + avx_tab[k];
 | 
						|
 | 
						|
        } else {
 | 
						|
            for (k = 0; k < 16; k++) {
 | 
						|
                int j = i + k;
 | 
						|
                j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
 | 
						|
                s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
 | 
						|
{
 | 
						|
    int i, j, n;
 | 
						|
 | 
						|
    if (nbits < 2 || nbits > 16)
 | 
						|
        goto fail;
 | 
						|
    s->nbits = nbits;
 | 
						|
    n = 1 << nbits;
 | 
						|
 | 
						|
    s->revtab = av_malloc(n * sizeof(uint16_t));
 | 
						|
    if (!s->revtab)
 | 
						|
        goto fail;
 | 
						|
    s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
 | 
						|
    if (!s->tmp_buf)
 | 
						|
        goto fail;
 | 
						|
    s->inverse = inverse;
 | 
						|
    s->fft_permutation = FF_FFT_PERM_DEFAULT;
 | 
						|
 | 
						|
    s->fft_permute = fft_permute_c;
 | 
						|
    s->fft_calc    = fft_calc_c;
 | 
						|
#if CONFIG_MDCT
 | 
						|
    s->imdct_calc  = ff_imdct_calc_c;
 | 
						|
    s->imdct_half  = ff_imdct_half_c;
 | 
						|
    s->mdct_calc   = ff_mdct_calc_c;
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_FFT_FLOAT
 | 
						|
    if (ARCH_ARM)     ff_fft_init_arm(s);
 | 
						|
    if (ARCH_PPC)     ff_fft_init_ppc(s);
 | 
						|
    if (ARCH_X86)     ff_fft_init_x86(s);
 | 
						|
    if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
 | 
						|
#else
 | 
						|
    if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
 | 
						|
    if (ARCH_ARM)     ff_fft_fixed_init_arm(s);
 | 
						|
#endif
 | 
						|
 | 
						|
    for(j=4; j<=nbits; j++) {
 | 
						|
        ff_init_ff_cos_tabs(j);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->fft_permutation == FF_FFT_PERM_AVX) {
 | 
						|
        fft_perm_avx(s);
 | 
						|
    } else {
 | 
						|
        for(i=0; i<n; i++) {
 | 
						|
            int j = i;
 | 
						|
            if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
 | 
						|
                j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
 | 
						|
            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 fail:
 | 
						|
    av_freep(&s->revtab);
 | 
						|
    av_freep(&s->tmp_buf);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static void fft_permute_c(FFTContext *s, FFTComplex *z)
 | 
						|
{
 | 
						|
    int j, np;
 | 
						|
    const uint16_t *revtab = s->revtab;
 | 
						|
    np = 1 << s->nbits;
 | 
						|
    /* TODO: handle split-radix permute in a more optimal way, probably in-place */
 | 
						|
    for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
 | 
						|
    memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
 | 
						|
}
 | 
						|
 | 
						|
av_cold void ff_fft_end(FFTContext *s)
 | 
						|
{
 | 
						|
    av_freep(&s->revtab);
 | 
						|
    av_freep(&s->tmp_buf);
 | 
						|
}
 | 
						|
 | 
						|
#define BUTTERFLIES(a0,a1,a2,a3) {\
 | 
						|
    BF(t3, t5, t5, t1);\
 | 
						|
    BF(a2.re, a0.re, a0.re, t5);\
 | 
						|
    BF(a3.im, a1.im, a1.im, t3);\
 | 
						|
    BF(t4, t6, t2, t6);\
 | 
						|
    BF(a3.re, a1.re, a1.re, t4);\
 | 
						|
    BF(a2.im, a0.im, a0.im, t6);\
 | 
						|
}
 | 
						|
 | 
						|
// force loading all the inputs before storing any.
 | 
						|
// this is slightly slower for small data, but avoids store->load aliasing
 | 
						|
// for addresses separated by large powers of 2.
 | 
						|
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
 | 
						|
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
 | 
						|
    BF(t3, t5, t5, t1);\
 | 
						|
    BF(a2.re, a0.re, r0, t5);\
 | 
						|
    BF(a3.im, a1.im, i1, t3);\
 | 
						|
    BF(t4, t6, t2, t6);\
 | 
						|
    BF(a3.re, a1.re, r1, t4);\
 | 
						|
    BF(a2.im, a0.im, i0, t6);\
 | 
						|
}
 | 
						|
 | 
						|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
 | 
						|
    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
 | 
						|
    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
 | 
						|
    BUTTERFLIES(a0,a1,a2,a3)\
 | 
						|
}
 | 
						|
 | 
						|
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
 | 
						|
    t1 = a2.re;\
 | 
						|
    t2 = a2.im;\
 | 
						|
    t5 = a3.re;\
 | 
						|
    t6 = a3.im;\
 | 
						|
    BUTTERFLIES(a0,a1,a2,a3)\
 | 
						|
}
 | 
						|
 | 
						|
/* z[0...8n-1], w[1...2n-1] */
 | 
						|
#define PASS(name)\
 | 
						|
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
 | 
						|
{\
 | 
						|
    FFTDouble t1, t2, t3, t4, t5, t6;\
 | 
						|
    int o1 = 2*n;\
 | 
						|
    int o2 = 4*n;\
 | 
						|
    int o3 = 6*n;\
 | 
						|
    const FFTSample *wim = wre+o1;\
 | 
						|
    n--;\
 | 
						|
\
 | 
						|
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
 | 
						|
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | 
						|
    do {\
 | 
						|
        z += 2;\
 | 
						|
        wre += 2;\
 | 
						|
        wim -= 2;\
 | 
						|
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
 | 
						|
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | 
						|
    } while(--n);\
 | 
						|
}
 | 
						|
 | 
						|
PASS(pass)
 | 
						|
#undef BUTTERFLIES
 | 
						|
#define BUTTERFLIES BUTTERFLIES_BIG
 | 
						|
PASS(pass_big)
 | 
						|
 | 
						|
#define DECL_FFT(n,n2,n4)\
 | 
						|
static void fft##n(FFTComplex *z)\
 | 
						|
{\
 | 
						|
    fft##n2(z);\
 | 
						|
    fft##n4(z+n4*2);\
 | 
						|
    fft##n4(z+n4*3);\
 | 
						|
    pass(z,FFT_NAME(ff_cos_##n),n4/2);\
 | 
						|
}
 | 
						|
 | 
						|
static void fft4(FFTComplex *z)
 | 
						|
{
 | 
						|
    FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
 | 
						|
 | 
						|
    BF(t3, t1, z[0].re, z[1].re);
 | 
						|
    BF(t8, t6, z[3].re, z[2].re);
 | 
						|
    BF(z[2].re, z[0].re, t1, t6);
 | 
						|
    BF(t4, t2, z[0].im, z[1].im);
 | 
						|
    BF(t7, t5, z[2].im, z[3].im);
 | 
						|
    BF(z[3].im, z[1].im, t4, t8);
 | 
						|
    BF(z[3].re, z[1].re, t3, t7);
 | 
						|
    BF(z[2].im, z[0].im, t2, t5);
 | 
						|
}
 | 
						|
 | 
						|
static void fft8(FFTComplex *z)
 | 
						|
{
 | 
						|
    FFTDouble t1, t2, t3, t4, t5, t6;
 | 
						|
 | 
						|
    fft4(z);
 | 
						|
 | 
						|
    BF(t1, z[5].re, z[4].re, -z[5].re);
 | 
						|
    BF(t2, z[5].im, z[4].im, -z[5].im);
 | 
						|
    BF(t5, z[7].re, z[6].re, -z[7].re);
 | 
						|
    BF(t6, z[7].im, z[6].im, -z[7].im);
 | 
						|
 | 
						|
    BUTTERFLIES(z[0],z[2],z[4],z[6]);
 | 
						|
    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
 | 
						|
}
 | 
						|
 | 
						|
#if !CONFIG_SMALL
 | 
						|
static void fft16(FFTComplex *z)
 | 
						|
{
 | 
						|
    FFTDouble t1, t2, t3, t4, t5, t6;
 | 
						|
    FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
 | 
						|
    FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
 | 
						|
 | 
						|
    fft8(z);
 | 
						|
    fft4(z+8);
 | 
						|
    fft4(z+12);
 | 
						|
 | 
						|
    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
 | 
						|
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
 | 
						|
    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
 | 
						|
    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
 | 
						|
}
 | 
						|
#else
 | 
						|
DECL_FFT(16,8,4)
 | 
						|
#endif
 | 
						|
DECL_FFT(32,16,8)
 | 
						|
DECL_FFT(64,32,16)
 | 
						|
DECL_FFT(128,64,32)
 | 
						|
DECL_FFT(256,128,64)
 | 
						|
DECL_FFT(512,256,128)
 | 
						|
#if !CONFIG_SMALL
 | 
						|
#define pass pass_big
 | 
						|
#endif
 | 
						|
DECL_FFT(1024,512,256)
 | 
						|
DECL_FFT(2048,1024,512)
 | 
						|
DECL_FFT(4096,2048,1024)
 | 
						|
DECL_FFT(8192,4096,2048)
 | 
						|
DECL_FFT(16384,8192,4096)
 | 
						|
DECL_FFT(32768,16384,8192)
 | 
						|
DECL_FFT(65536,32768,16384)
 | 
						|
 | 
						|
static void (* const fft_dispatch[])(FFTComplex*) = {
 | 
						|
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
 | 
						|
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
 | 
						|
};
 | 
						|
 | 
						|
static void fft_calc_c(FFTContext *s, FFTComplex *z)
 | 
						|
{
 | 
						|
    fft_dispatch[s->nbits-2](z);
 | 
						|
}
 |