514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (c) 2002 Fabrice Bellard
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * FFT and MDCT tests.
 | |
|  */
 | |
| 
 | |
| #include "config.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #if HAVE_UNISTD_H
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/cpu.h"
 | |
| #include "libavutil/lfg.h"
 | |
| #include "libavutil/log.h"
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "libavutil/time.h"
 | |
| 
 | |
| #include "fft.h"
 | |
| #if FFT_FLOAT
 | |
| #include "dct.h"
 | |
| #include "rdft.h"
 | |
| #endif
 | |
| 
 | |
| /* reference fft */
 | |
| 
 | |
| #define MUL16(a, b) ((a) * (b))
 | |
| 
 | |
| #define CMAC(pre, pim, are, aim, bre, bim)          \
 | |
|     {                                               \
 | |
|         pre += (MUL16(are, bre) - MUL16(aim, bim)); \
 | |
|         pim += (MUL16(are, bim) + MUL16(bre, aim)); \
 | |
|     }
 | |
| 
 | |
| #if FFT_FLOAT
 | |
| #define RANGE 1.0
 | |
| #define REF_SCALE(x, bits)  (x)
 | |
| #define FMT "%10.6f"
 | |
| #else
 | |
| #define RANGE 16384
 | |
| #define REF_SCALE(x, bits) ((x) / (1 << (bits)))
 | |
| #define FMT "%6d"
 | |
| #endif
 | |
| 
 | |
| static struct {
 | |
|     float re, im;
 | |
| } *exptab;
 | |
| 
 | |
| static int fft_ref_init(int nbits, int inverse)
 | |
| {
 | |
|     int i, n = 1 << nbits;
 | |
| 
 | |
|     exptab = av_malloc((n / 2) * sizeof(*exptab));
 | |
|     if (!exptab)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (i = 0; i < (n / 2); i++) {
 | |
|         double alpha = 2 * M_PI * (float) i / (float) n;
 | |
|         double c1 = cos(alpha), s1 = sin(alpha);
 | |
|         if (!inverse)
 | |
|             s1 = -s1;
 | |
|         exptab[i].re = c1;
 | |
|         exptab[i].im = s1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
 | |
| {
 | |
|     int i, j;
 | |
|     int n  = 1 << nbits;
 | |
|     int n2 = n >> 1;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         double tmp_re = 0, tmp_im = 0;
 | |
|         FFTComplex *q = tab;
 | |
|         for (j = 0; j < n; j++) {
 | |
|             double s, c;
 | |
|             int k = (i * j) & (n - 1);
 | |
|             if (k >= n2) {
 | |
|                 c = -exptab[k - n2].re;
 | |
|                 s = -exptab[k - n2].im;
 | |
|             } else {
 | |
|                 c = exptab[k].re;
 | |
|                 s = exptab[k].im;
 | |
|             }
 | |
|             CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
 | |
|             q++;
 | |
|         }
 | |
|         tabr[i].re = REF_SCALE(tmp_re, nbits);
 | |
|         tabr[i].im = REF_SCALE(tmp_im, nbits);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if CONFIG_MDCT
 | |
| static void imdct_ref(FFTSample *out, FFTSample *in, int nbits)
 | |
| {
 | |
|     int i, k, n = 1 << nbits;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         double sum = 0;
 | |
|         for (k = 0; k < n / 2; k++) {
 | |
|             int a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
 | |
|             double f = cos(M_PI * a / (double) (2 * n));
 | |
|             sum += f * in[k];
 | |
|         }
 | |
|         out[i] = REF_SCALE(-sum, nbits - 2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* NOTE: no normalisation by 1 / N is done */
 | |
| static void mdct_ref(FFTSample *output, FFTSample *input, int nbits)
 | |
| {
 | |
|     int i, k, n = 1 << nbits;
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for (k = 0; k < n / 2; k++) {
 | |
|         double s = 0;
 | |
|         for (i = 0; i < n; i++) {
 | |
|             double a = (2 * M_PI * (2 * i + 1 + n / 2) * (2 * k + 1) / (4 * n));
 | |
|             s += input[i] * cos(a);
 | |
|         }
 | |
|         output[k] = REF_SCALE(s, nbits - 1);
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_MDCT */
 | |
| 
 | |
| #if FFT_FLOAT
 | |
| #if CONFIG_DCT
 | |
| static void idct_ref(float *output, float *input, int nbits)
 | |
| {
 | |
|     int i, k, n = 1 << nbits;
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for (i = 0; i < n; i++) {
 | |
|         double s = 0.5 * input[0];
 | |
|         for (k = 1; k < n; k++) {
 | |
|             double a = M_PI * k * (i + 0.5) / n;
 | |
|             s += input[k] * cos(a);
 | |
|         }
 | |
|         output[i] = 2 * s / n;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dct_ref(float *output, float *input, int nbits)
 | |
| {
 | |
|     int i, k, n = 1 << nbits;
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for (k = 0; k < n; k++) {
 | |
|         double s = 0;
 | |
|         for (i = 0; i < n; i++) {
 | |
|             double a = M_PI * k * (i + 0.5) / n;
 | |
|             s += input[i] * cos(a);
 | |
|         }
 | |
|         output[k] = s;
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_DCT */
 | |
| #endif /* FFT_FLOAT */
 | |
| 
 | |
| static FFTSample frandom(AVLFG *prng)
 | |
| {
 | |
|     return (int16_t) av_lfg_get(prng) / 32768.0 * RANGE;
 | |
| }
 | |
| 
 | |
| static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
 | |
| {
 | |
|     int i, err = 0;
 | |
|     double error = 0, max = 0;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE;
 | |
|         if (e >= 1e-3) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n",
 | |
|                    i, tab1[i], tab2[i]);
 | |
|             err = 1;
 | |
|         }
 | |
|         error += e * e;
 | |
|         if (e > max)
 | |
|             max = e;
 | |
|     }
 | |
|     av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error) / n);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| static void help(void)
 | |
| {
 | |
|     av_log(NULL, AV_LOG_INFO,
 | |
|            "usage: fft-test [-h] [-s] [-i] [-n b]\n"
 | |
|            "-h     print this help\n"
 | |
|            "-s     speed test\n"
 | |
|            "-m     (I)MDCT test\n"
 | |
|            "-d     (I)DCT test\n"
 | |
|            "-r     (I)RDFT test\n"
 | |
|            "-i     inverse transform test\n"
 | |
|            "-n b   set the transform size to 2^b\n"
 | |
|            "-f x   set scale factor for output data of (I)MDCT to x\n");
 | |
| }
 | |
| 
 | |
| enum tf_transform {
 | |
|     TRANSFORM_FFT,
 | |
|     TRANSFORM_MDCT,
 | |
|     TRANSFORM_RDFT,
 | |
|     TRANSFORM_DCT,
 | |
| };
 | |
| 
 | |
| #if !HAVE_GETOPT
 | |
| #include "compat/getopt.c"
 | |
| #endif
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     FFTComplex *tab, *tab1, *tab_ref;
 | |
|     FFTSample *tab2;
 | |
|     enum tf_transform transform = TRANSFORM_FFT;
 | |
|     FFTContext m, s;
 | |
| #if FFT_FLOAT
 | |
|     RDFTContext r;
 | |
|     DCTContext d;
 | |
| #endif /* FFT_FLOAT */
 | |
|     int it, i, err = 1;
 | |
|     int do_speed = 0, do_inverse = 0;
 | |
|     int fft_nbits = 9, fft_size;
 | |
|     double scale = 1.0;
 | |
|     AVLFG prng;
 | |
| 
 | |
|     av_lfg_init(&prng, 1);
 | |
| 
 | |
|     for (;;) {
 | |
|         int c = getopt(argc, argv, "hsimrdn:f:c:");
 | |
|         if (c == -1)
 | |
|             break;
 | |
|         switch (c) {
 | |
|         case 'h':
 | |
|             help();
 | |
|             return 1;
 | |
|         case 's':
 | |
|             do_speed = 1;
 | |
|             break;
 | |
|         case 'i':
 | |
|             do_inverse = 1;
 | |
|             break;
 | |
|         case 'm':
 | |
|             transform = TRANSFORM_MDCT;
 | |
|             break;
 | |
|         case 'r':
 | |
|             transform = TRANSFORM_RDFT;
 | |
|             break;
 | |
|         case 'd':
 | |
|             transform = TRANSFORM_DCT;
 | |
|             break;
 | |
|         case 'n':
 | |
|             fft_nbits = atoi(optarg);
 | |
|             break;
 | |
|         case 'f':
 | |
|             scale = atof(optarg);
 | |
|             break;
 | |
|         case 'c':
 | |
|         {
 | |
|             int cpuflags = av_parse_cpu_flags(optarg);
 | |
|             if (cpuflags < 0)
 | |
|                 return 1;
 | |
|             av_set_cpu_flags_mask(cpuflags);
 | |
|             break;
 | |
|         }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fft_size = 1 << fft_nbits;
 | |
|     tab      = av_malloc(fft_size * sizeof(FFTComplex));
 | |
|     tab1     = av_malloc(fft_size * sizeof(FFTComplex));
 | |
|     tab_ref  = av_malloc(fft_size * sizeof(FFTComplex));
 | |
|     tab2     = av_malloc(fft_size * sizeof(FFTSample));
 | |
| 
 | |
|     if (!(tab && tab1 && tab_ref && tab2))
 | |
|         goto cleanup;
 | |
| 
 | |
|     switch (transform) {
 | |
| #if CONFIG_MDCT
 | |
|     case TRANSFORM_MDCT:
 | |
|         av_log(NULL, AV_LOG_INFO, "Scale factor is set to %f\n", scale);
 | |
|         if (do_inverse)
 | |
|             av_log(NULL, AV_LOG_INFO, "IMDCT");
 | |
|         else
 | |
|             av_log(NULL, AV_LOG_INFO, "MDCT");
 | |
|         ff_mdct_init(&m, fft_nbits, do_inverse, scale);
 | |
|         break;
 | |
| #endif /* CONFIG_MDCT */
 | |
|     case TRANSFORM_FFT:
 | |
|         if (do_inverse)
 | |
|             av_log(NULL, AV_LOG_INFO, "IFFT");
 | |
|         else
 | |
|             av_log(NULL, AV_LOG_INFO, "FFT");
 | |
|         ff_fft_init(&s, fft_nbits, do_inverse);
 | |
|         if (err = fft_ref_init(fft_nbits, do_inverse) < 0)
 | |
|             goto cleanup;
 | |
|         break;
 | |
| #if FFT_FLOAT
 | |
| #if CONFIG_RDFT
 | |
|     case TRANSFORM_RDFT:
 | |
|         if (do_inverse)
 | |
|             av_log(NULL, AV_LOG_INFO, "IDFT_C2R");
 | |
|         else
 | |
|             av_log(NULL, AV_LOG_INFO, "DFT_R2C");
 | |
|         ff_rdft_init(&r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
 | |
|         if (err = fft_ref_init(fft_nbits, do_inverse) < 0)
 | |
|             goto cleanup;
 | |
|         break;
 | |
| #endif /* CONFIG_RDFT */
 | |
| #if CONFIG_DCT
 | |
|     case TRANSFORM_DCT:
 | |
|         if (do_inverse)
 | |
|             av_log(NULL, AV_LOG_INFO, "DCT_III");
 | |
|         else
 | |
|             av_log(NULL, AV_LOG_INFO, "DCT_II");
 | |
|         ff_dct_init(&d, fft_nbits, do_inverse ? DCT_III : DCT_II);
 | |
|         break;
 | |
| #endif /* CONFIG_DCT */
 | |
| #endif /* FFT_FLOAT */
 | |
|     default:
 | |
|         av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
 | |
|         goto cleanup;
 | |
|     }
 | |
|     av_log(NULL, AV_LOG_INFO, " %d test\n", fft_size);
 | |
| 
 | |
|     /* generate random data */
 | |
| 
 | |
|     for (i = 0; i < fft_size; i++) {
 | |
|         tab1[i].re = frandom(&prng);
 | |
|         tab1[i].im = frandom(&prng);
 | |
|     }
 | |
| 
 | |
|     /* checking result */
 | |
|     av_log(NULL, AV_LOG_INFO, "Checking...\n");
 | |
| 
 | |
|     switch (transform) {
 | |
| #if CONFIG_MDCT
 | |
|     case TRANSFORM_MDCT:
 | |
|         if (do_inverse) {
 | |
|             imdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
 | |
|             m.imdct_calc(&m, tab2, &tab1->re);
 | |
|             err = check_diff(&tab_ref->re, tab2, fft_size, scale);
 | |
|         } else {
 | |
|             mdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
 | |
|             m.mdct_calc(&m, tab2, &tab1->re);
 | |
|             err = check_diff(&tab_ref->re, tab2, fft_size / 2, scale);
 | |
|         }
 | |
|         break;
 | |
| #endif /* CONFIG_MDCT */
 | |
|     case TRANSFORM_FFT:
 | |
|         memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
 | |
|         s.fft_permute(&s, tab);
 | |
|         s.fft_calc(&s, tab);
 | |
| 
 | |
|         fft_ref(tab_ref, tab1, fft_nbits);
 | |
|         err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 1.0);
 | |
|         break;
 | |
| #if FFT_FLOAT
 | |
| #if CONFIG_RDFT
 | |
|     case TRANSFORM_RDFT:
 | |
|     {
 | |
|         int fft_size_2 = fft_size >> 1;
 | |
|         if (do_inverse) {
 | |
|             tab1[0].im          = 0;
 | |
|             tab1[fft_size_2].im = 0;
 | |
|             for (i = 1; i < fft_size_2; i++) {
 | |
|                 tab1[fft_size_2 + i].re =  tab1[fft_size_2 - i].re;
 | |
|                 tab1[fft_size_2 + i].im = -tab1[fft_size_2 - i].im;
 | |
|             }
 | |
| 
 | |
|             memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
 | |
|             tab2[1] = tab1[fft_size_2].re;
 | |
| 
 | |
|             r.rdft_calc(&r, tab2);
 | |
|             fft_ref(tab_ref, tab1, fft_nbits);
 | |
|             for (i = 0; i < fft_size; i++) {
 | |
|                 tab[i].re = tab2[i];
 | |
|                 tab[i].im = 0;
 | |
|             }
 | |
|             err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 0.5);
 | |
|         } else {
 | |
|             for (i = 0; i < fft_size; i++) {
 | |
|                 tab2[i]    = tab1[i].re;
 | |
|                 tab1[i].im = 0;
 | |
|             }
 | |
|             r.rdft_calc(&r, tab2);
 | |
|             fft_ref(tab_ref, tab1, fft_nbits);
 | |
|             tab_ref[0].im = tab_ref[fft_size_2].re;
 | |
|             err = check_diff(&tab_ref->re, tab2, fft_size, 1.0);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| #endif /* CONFIG_RDFT */
 | |
| #if CONFIG_DCT
 | |
|     case TRANSFORM_DCT:
 | |
|         memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
 | |
|         d.dct_calc(&d, &tab->re);
 | |
|         if (do_inverse)
 | |
|             idct_ref(&tab_ref->re, &tab1->re, fft_nbits);
 | |
|         else
 | |
|             dct_ref(&tab_ref->re, &tab1->re, fft_nbits);
 | |
|         err = check_diff(&tab_ref->re, &tab->re, fft_size, 1.0);
 | |
|         break;
 | |
| #endif /* CONFIG_DCT */
 | |
| #endif /* FFT_FLOAT */
 | |
|     }
 | |
| 
 | |
|     /* do a speed test */
 | |
| 
 | |
|     if (do_speed) {
 | |
|         int64_t time_start, duration;
 | |
|         int nb_its;
 | |
| 
 | |
|         av_log(NULL, AV_LOG_INFO, "Speed test...\n");
 | |
|         /* we measure during about 1 seconds */
 | |
|         nb_its = 1;
 | |
|         for (;;) {
 | |
|             time_start = av_gettime();
 | |
|             for (it = 0; it < nb_its; it++) {
 | |
|                 switch (transform) {
 | |
|                 case TRANSFORM_MDCT:
 | |
|                     if (do_inverse)
 | |
|                         m.imdct_calc(&m, &tab->re, &tab1->re);
 | |
|                     else
 | |
|                         m.mdct_calc(&m, &tab->re, &tab1->re);
 | |
|                     break;
 | |
|                 case TRANSFORM_FFT:
 | |
|                     memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
 | |
|                     s.fft_calc(&s, tab);
 | |
|                     break;
 | |
| #if FFT_FLOAT
 | |
|                 case TRANSFORM_RDFT:
 | |
|                     memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
 | |
|                     r.rdft_calc(&r, tab2);
 | |
|                     break;
 | |
|                 case TRANSFORM_DCT:
 | |
|                     memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
 | |
|                     d.dct_calc(&d, tab2);
 | |
|                     break;
 | |
| #endif /* FFT_FLOAT */
 | |
|                 }
 | |
|             }
 | |
|             duration = av_gettime() - time_start;
 | |
|             if (duration >= 1000000)
 | |
|                 break;
 | |
|             nb_its *= 2;
 | |
|         }
 | |
|         av_log(NULL, AV_LOG_INFO,
 | |
|                "time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
 | |
|                (double) duration / nb_its,
 | |
|                (double) duration / 1000000.0,
 | |
|                nb_its);
 | |
|     }
 | |
| 
 | |
|     switch (transform) {
 | |
| #if CONFIG_MDCT
 | |
|     case TRANSFORM_MDCT:
 | |
|         ff_mdct_end(&m);
 | |
|         break;
 | |
| #endif /* CONFIG_MDCT */
 | |
|     case TRANSFORM_FFT:
 | |
|         ff_fft_end(&s);
 | |
|         break;
 | |
| #if FFT_FLOAT
 | |
| #if CONFIG_RDFT
 | |
|     case TRANSFORM_RDFT:
 | |
|         ff_rdft_end(&r);
 | |
|         break;
 | |
| #endif /* CONFIG_RDFT */
 | |
| #if CONFIG_DCT
 | |
|     case TRANSFORM_DCT:
 | |
|         ff_dct_end(&d);
 | |
|         break;
 | |
| #endif /* CONFIG_DCT */
 | |
| #endif /* FFT_FLOAT */
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     av_free(tab);
 | |
|     av_free(tab1);
 | |
|     av_free(tab2);
 | |
|     av_free(tab_ref);
 | |
|     av_free(exptab);
 | |
| 
 | |
|     if (err)
 | |
|         printf("Error: %d.\n", err);
 | |
| 
 | |
|     return !!err;
 | |
| }
 |