957 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			957 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * MPEG-4 Parametric Stereo decoding functions
 | |
|  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "aacps.h"
 | |
| #include "aacps_tablegen.h"
 | |
| #include "aacpsdata.c"
 | |
| 
 | |
| #define PS_BASELINE 0  ///< Operate in Baseline PS mode
 | |
|                        ///< Baseline implies 10 or 20 stereo bands,
 | |
|                        ///< mixing mode A, and no ipd/opd
 | |
| 
 | |
| #define numQMFSlots 32 //numTimeSlots * RATE
 | |
| 
 | |
| static const int8_t num_env_tab[2][4] = {
 | |
|     { 0, 1, 2, 4, },
 | |
|     { 1, 2, 3, 4, },
 | |
| };
 | |
| 
 | |
| static const int8_t nr_iidicc_par_tab[] = {
 | |
|     10, 20, 34, 10, 20, 34,
 | |
| };
 | |
| 
 | |
| static const int8_t nr_iidopd_par_tab[] = {
 | |
|      5, 11, 17,  5, 11, 17,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     huff_iid_df1,
 | |
|     huff_iid_dt1,
 | |
|     huff_iid_df0,
 | |
|     huff_iid_dt0,
 | |
|     huff_icc_df,
 | |
|     huff_icc_dt,
 | |
|     huff_ipd_df,
 | |
|     huff_ipd_dt,
 | |
|     huff_opd_df,
 | |
|     huff_opd_dt,
 | |
| };
 | |
| 
 | |
| static const int huff_iid[] = {
 | |
|     huff_iid_df0,
 | |
|     huff_iid_df1,
 | |
|     huff_iid_dt0,
 | |
|     huff_iid_dt1,
 | |
| };
 | |
| 
 | |
| static VLC vlc_ps[10];
 | |
| 
 | |
| #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
 | |
| /** \
 | |
|  * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
 | |
|  * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
 | |
|  * bitstream. \
 | |
|  * \
 | |
|  * @param avctx contains the current codec context \
 | |
|  * @param gb    pointer to the input bitstream \
 | |
|  * @param ps    pointer to the Parametric Stereo context \
 | |
|  * @param PAR   pointer to the parameter to be read \
 | |
|  * @param e     envelope to decode \
 | |
|  * @param dt    1: time delta-coded, 0: frequency delta-coded \
 | |
|  */ \
 | |
| static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
 | |
|                         int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
 | |
| { \
 | |
|     int b, num = ps->nr_ ## PAR ## _par; \
 | |
|     VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
 | |
|     if (dt) { \
 | |
|         int e_prev = e ? e - 1 : ps->num_env_old - 1; \
 | |
|         e_prev = FFMAX(e_prev, 0); \
 | |
|         for (b = 0; b < num; b++) { \
 | |
|             int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
 | |
|             if (MASK) val &= MASK; \
 | |
|             PAR[e][b] = val; \
 | |
|             if (ERR_CONDITION) \
 | |
|                 goto err; \
 | |
|         } \
 | |
|     } else { \
 | |
|         int val = 0; \
 | |
|         for (b = 0; b < num; b++) { \
 | |
|             val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
 | |
|             if (MASK) val &= MASK; \
 | |
|             PAR[e][b] = val; \
 | |
|             if (ERR_CONDITION) \
 | |
|                 goto err; \
 | |
|         } \
 | |
|     } \
 | |
|     return 0; \
 | |
| err: \
 | |
|     av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
 | |
|     return -1; \
 | |
| }
 | |
| 
 | |
| READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
 | |
| READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
 | |
| READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
 | |
| 
 | |
| static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
 | |
| {
 | |
|     int e;
 | |
|     int count = get_bits_count(gb);
 | |
| 
 | |
|     if (ps_extension_id)
 | |
|         return 0;
 | |
| 
 | |
|     ps->enable_ipdopd = get_bits1(gb);
 | |
|     if (ps->enable_ipdopd) {
 | |
|         for (e = 0; e < ps->num_env; e++) {
 | |
|             int dt = get_bits1(gb);
 | |
|             read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
 | |
|             dt = get_bits1(gb);
 | |
|             read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
 | |
|         }
 | |
|     }
 | |
|     skip_bits1(gb);      //reserved_ps
 | |
|     return get_bits_count(gb) - count;
 | |
| }
 | |
| 
 | |
| static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
 | |
|         opd_hist[i] = 0;
 | |
|         ipd_hist[i] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
 | |
| {
 | |
|     int e;
 | |
|     int bit_count_start = get_bits_count(gb_host);
 | |
|     int header;
 | |
|     int bits_consumed;
 | |
|     GetBitContext gbc = *gb_host, *gb = &gbc;
 | |
| 
 | |
|     header = get_bits1(gb);
 | |
|     if (header) {     //enable_ps_header
 | |
|         ps->enable_iid = get_bits1(gb);
 | |
|         if (ps->enable_iid) {
 | |
|             int iid_mode = get_bits(gb, 3);
 | |
|             if (iid_mode > 5) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
 | |
|                        iid_mode);
 | |
|                 goto err;
 | |
|             }
 | |
|             ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
 | |
|             ps->iid_quant     = iid_mode > 2;
 | |
|             ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
 | |
|         }
 | |
|         ps->enable_icc = get_bits1(gb);
 | |
|         if (ps->enable_icc) {
 | |
|             ps->icc_mode = get_bits(gb, 3);
 | |
|             if (ps->icc_mode > 5) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
 | |
|                        ps->icc_mode);
 | |
|                 goto err;
 | |
|             }
 | |
|             ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
 | |
|         }
 | |
|         ps->enable_ext = get_bits1(gb);
 | |
|     }
 | |
| 
 | |
|     ps->frame_class = get_bits1(gb);
 | |
|     ps->num_env_old = ps->num_env;
 | |
|     ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
 | |
| 
 | |
|     ps->border_position[0] = -1;
 | |
|     if (ps->frame_class) {
 | |
|         for (e = 1; e <= ps->num_env; e++)
 | |
|             ps->border_position[e] = get_bits(gb, 5);
 | |
|     } else
 | |
|         for (e = 1; e <= ps->num_env; e++)
 | |
|             ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
 | |
| 
 | |
|     if (ps->enable_iid) {
 | |
|         for (e = 0; e < ps->num_env; e++) {
 | |
|             int dt = get_bits1(gb);
 | |
|             if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
 | |
|                 goto err;
 | |
|         }
 | |
|     } else
 | |
|         memset(ps->iid_par, 0, sizeof(ps->iid_par));
 | |
| 
 | |
|     if (ps->enable_icc)
 | |
|         for (e = 0; e < ps->num_env; e++) {
 | |
|             int dt = get_bits1(gb);
 | |
|             if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
 | |
|                 goto err;
 | |
|         }
 | |
|     else
 | |
|         memset(ps->icc_par, 0, sizeof(ps->icc_par));
 | |
| 
 | |
|     if (ps->enable_ext) {
 | |
|         int cnt = get_bits(gb, 4);
 | |
|         if (cnt == 15) {
 | |
|             cnt += get_bits(gb, 8);
 | |
|         }
 | |
|         cnt *= 8;
 | |
|         while (cnt > 7) {
 | |
|             int ps_extension_id = get_bits(gb, 2);
 | |
|             cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
 | |
|         }
 | |
|         if (cnt < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
 | |
|             goto err;
 | |
|         }
 | |
|         skip_bits(gb, cnt);
 | |
|     }
 | |
| 
 | |
|     ps->enable_ipdopd &= !PS_BASELINE;
 | |
| 
 | |
|     //Fix up envelopes
 | |
|     if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
 | |
|         //Create a fake envelope
 | |
|         int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
 | |
|         if (source >= 0 && source != ps->num_env) {
 | |
|             if (ps->enable_iid) {
 | |
|                 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
 | |
|             }
 | |
|             if (ps->enable_icc) {
 | |
|                 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
 | |
|             }
 | |
|             if (ps->enable_ipdopd) {
 | |
|                 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
 | |
|                 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
 | |
|             }
 | |
|         }
 | |
|         ps->num_env++;
 | |
|         ps->border_position[ps->num_env] = numQMFSlots - 1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     ps->is34bands_old = ps->is34bands;
 | |
|     if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
 | |
|         ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
 | |
|                         (ps->enable_icc && ps->nr_icc_par == 34);
 | |
| 
 | |
|     //Baseline
 | |
|     if (!ps->enable_ipdopd) {
 | |
|         memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
 | |
|         memset(ps->opd_par, 0, sizeof(ps->opd_par));
 | |
|     }
 | |
| 
 | |
|     if (header)
 | |
|         ps->start = 1;
 | |
| 
 | |
|     bits_consumed = get_bits_count(gb) - bit_count_start;
 | |
|     if (bits_consumed <= bits_left) {
 | |
|         skip_bits_long(gb_host, bits_consumed);
 | |
|         return bits_consumed;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
 | |
| err:
 | |
|     ps->start = 0;
 | |
|     skip_bits_long(gb_host, bits_left);
 | |
|     memset(ps->iid_par, 0, sizeof(ps->iid_par));
 | |
|     memset(ps->icc_par, 0, sizeof(ps->icc_par));
 | |
|     memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
 | |
|     memset(ps->opd_par, 0, sizeof(ps->opd_par));
 | |
|     return bits_left;
 | |
| }
 | |
| 
 | |
| /** Split one subband into 2 subsubbands with a symmetric real filter.
 | |
|  * The filter must have its non-center even coefficients equal to zero. */
 | |
| static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
 | |
| {
 | |
|     int i, j;
 | |
|     for (i = 0; i < len; i++, in++) {
 | |
|         float re_in = filter[6] * in[6][0];          //real inphase
 | |
|         float re_op = 0.0f;                          //real out of phase
 | |
|         float im_in = filter[6] * in[6][1];          //imag inphase
 | |
|         float im_op = 0.0f;                          //imag out of phase
 | |
|         for (j = 0; j < 6; j += 2) {
 | |
|             re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
 | |
|             im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
 | |
|         }
 | |
|         out[ reverse][i][0] = re_in + re_op;
 | |
|         out[ reverse][i][1] = im_in + im_op;
 | |
|         out[!reverse][i][0] = re_in - re_op;
 | |
|         out[!reverse][i][1] = im_in - im_op;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** Split one subband into 6 subsubbands with a complex filter */
 | |
| static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2],
 | |
|                        TABLE_CONST float (*filter)[8][2], int len)
 | |
| {
 | |
|     int i;
 | |
|     int N = 8;
 | |
|     LOCAL_ALIGNED_16(float, temp, [8], [2]);
 | |
| 
 | |
|     for (i = 0; i < len; i++, in++) {
 | |
|         dsp->hybrid_analysis(temp, in, (const float (*)[8][2]) filter, 1, N);
 | |
|         out[0][i][0] = temp[6][0];
 | |
|         out[0][i][1] = temp[6][1];
 | |
|         out[1][i][0] = temp[7][0];
 | |
|         out[1][i][1] = temp[7][1];
 | |
|         out[2][i][0] = temp[0][0];
 | |
|         out[2][i][1] = temp[0][1];
 | |
|         out[3][i][0] = temp[1][0];
 | |
|         out[3][i][1] = temp[1][1];
 | |
|         out[4][i][0] = temp[2][0] + temp[5][0];
 | |
|         out[4][i][1] = temp[2][1] + temp[5][1];
 | |
|         out[5][i][0] = temp[3][0] + temp[4][0];
 | |
|         out[5][i][1] = temp[3][1] + temp[4][1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hybrid4_8_12_cx(PSDSPContext *dsp,
 | |
|                             float (*in)[2], float (*out)[32][2],
 | |
|                             TABLE_CONST float (*filter)[8][2], int N, int len)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < len; i++, in++) {
 | |
|         dsp->hybrid_analysis(out[0] + i, in, (const float (*)[8][2]) filter, 32, N);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
 | |
|                             float in[5][44][2], float L[2][38][64],
 | |
|                             int is34, int len)
 | |
| {
 | |
|     int i, j;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         for (j = 0; j < 38; j++) {
 | |
|             in[i][j+6][0] = L[0][j][i];
 | |
|             in[i][j+6][1] = L[1][j][i];
 | |
|         }
 | |
|     }
 | |
|     if (is34) {
 | |
|         hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
 | |
|         hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
 | |
|         hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
 | |
|         hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
 | |
|         hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
 | |
|         dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
 | |
|     } else {
 | |
|         hybrid6_cx(dsp, in[0], out, f20_0_8, len);
 | |
|         hybrid2_re(in[1], out+6, g1_Q2, len, 1);
 | |
|         hybrid2_re(in[2], out+8, g1_Q2, len, 0);
 | |
|         dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
 | |
|     }
 | |
|     //update in_buf
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
 | |
|                              float in[91][32][2], int is34, int len)
 | |
| {
 | |
|     int i, n;
 | |
|     if (is34) {
 | |
|         for (n = 0; n < len; n++) {
 | |
|             memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
 | |
|             memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
 | |
|             for (i = 0; i < 12; i++) {
 | |
|                 out[0][n][0] += in[   i][n][0];
 | |
|                 out[1][n][0] += in[   i][n][1];
 | |
|             }
 | |
|             for (i = 0; i < 8; i++) {
 | |
|                 out[0][n][1] += in[12+i][n][0];
 | |
|                 out[1][n][1] += in[12+i][n][1];
 | |
|             }
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 out[0][n][2] += in[20+i][n][0];
 | |
|                 out[1][n][2] += in[20+i][n][1];
 | |
|                 out[0][n][3] += in[24+i][n][0];
 | |
|                 out[1][n][3] += in[24+i][n][1];
 | |
|                 out[0][n][4] += in[28+i][n][0];
 | |
|                 out[1][n][4] += in[28+i][n][1];
 | |
|             }
 | |
|         }
 | |
|         dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
 | |
|     } else {
 | |
|         for (n = 0; n < len; n++) {
 | |
|             out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
 | |
|                            in[3][n][0] + in[4][n][0] + in[5][n][0];
 | |
|             out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
 | |
|                            in[3][n][1] + in[4][n][1] + in[5][n][1];
 | |
|             out[0][n][1] = in[6][n][0] + in[7][n][0];
 | |
|             out[1][n][1] = in[6][n][1] + in[7][n][1];
 | |
|             out[0][n][2] = in[8][n][0] + in[9][n][0];
 | |
|             out[1][n][2] = in[8][n][1] + in[9][n][1];
 | |
|         }
 | |
|         dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// All-pass filter decay slope
 | |
| #define DECAY_SLOPE      0.05f
 | |
| /// Number of frequency bands that can be addressed by the parameter index, b(k)
 | |
| static const int   NR_PAR_BANDS[]      = { 20, 34 };
 | |
| /// Number of frequency bands that can be addressed by the sub subband index, k
 | |
| static const int   NR_BANDS[]          = { 71, 91 };
 | |
| /// Start frequency band for the all-pass filter decay slope
 | |
| static const int   DECAY_CUTOFF[]      = { 10, 32 };
 | |
| /// Number of all-pass filer bands
 | |
| static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
 | |
| /// First stereo band using the short one sample delay
 | |
| static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
 | |
| 
 | |
| /** Table 8.46 */
 | |
| static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
 | |
| {
 | |
|     int b;
 | |
|     if (full)
 | |
|         b = 9;
 | |
|     else {
 | |
|         b = 4;
 | |
|         par_mapped[10] = 0;
 | |
|     }
 | |
|     for (; b >= 0; b--) {
 | |
|         par_mapped[2*b+1] = par_mapped[2*b] = par[b];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
 | |
| {
 | |
|     par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
 | |
|     par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
 | |
|     par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
 | |
|     par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
 | |
|     par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
 | |
|     par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
 | |
|     par_mapped[ 6] =    par[10];
 | |
|     par_mapped[ 7] =    par[11];
 | |
|     par_mapped[ 8] = (  par[12] +   par[13]) / 2;
 | |
|     par_mapped[ 9] = (  par[14] +   par[15]) / 2;
 | |
|     par_mapped[10] =    par[16];
 | |
|     if (full) {
 | |
|         par_mapped[11] =    par[17];
 | |
|         par_mapped[12] =    par[18];
 | |
|         par_mapped[13] =    par[19];
 | |
|         par_mapped[14] = (  par[20] +   par[21]) / 2;
 | |
|         par_mapped[15] = (  par[22] +   par[23]) / 2;
 | |
|         par_mapped[16] = (  par[24] +   par[25]) / 2;
 | |
|         par_mapped[17] = (  par[26] +   par[27]) / 2;
 | |
|         par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
 | |
|         par_mapped[19] = (  par[32] +   par[33]) / 2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
 | |
| {
 | |
|     par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
 | |
|     par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
 | |
|     par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
 | |
|     par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
 | |
|     par[ 4] = (  par[ 6] +   par[ 7]) * 0.5f;
 | |
|     par[ 5] = (  par[ 8] +   par[ 9]) * 0.5f;
 | |
|     par[ 6] =    par[10];
 | |
|     par[ 7] =    par[11];
 | |
|     par[ 8] = (  par[12] +   par[13]) * 0.5f;
 | |
|     par[ 9] = (  par[14] +   par[15]) * 0.5f;
 | |
|     par[10] =    par[16];
 | |
|     par[11] =    par[17];
 | |
|     par[12] =    par[18];
 | |
|     par[13] =    par[19];
 | |
|     par[14] = (  par[20] +   par[21]) * 0.5f;
 | |
|     par[15] = (  par[22] +   par[23]) * 0.5f;
 | |
|     par[16] = (  par[24] +   par[25]) * 0.5f;
 | |
|     par[17] = (  par[26] +   par[27]) * 0.5f;
 | |
|     par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
 | |
|     par[19] = (  par[32] +   par[33]) * 0.5f;
 | |
| }
 | |
| 
 | |
| static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
 | |
| {
 | |
|     if (full) {
 | |
|         par_mapped[33] = par[9];
 | |
|         par_mapped[32] = par[9];
 | |
|         par_mapped[31] = par[9];
 | |
|         par_mapped[30] = par[9];
 | |
|         par_mapped[29] = par[9];
 | |
|         par_mapped[28] = par[9];
 | |
|         par_mapped[27] = par[8];
 | |
|         par_mapped[26] = par[8];
 | |
|         par_mapped[25] = par[8];
 | |
|         par_mapped[24] = par[8];
 | |
|         par_mapped[23] = par[7];
 | |
|         par_mapped[22] = par[7];
 | |
|         par_mapped[21] = par[7];
 | |
|         par_mapped[20] = par[7];
 | |
|         par_mapped[19] = par[6];
 | |
|         par_mapped[18] = par[6];
 | |
|         par_mapped[17] = par[5];
 | |
|         par_mapped[16] = par[5];
 | |
|     } else {
 | |
|         par_mapped[16] =      0;
 | |
|     }
 | |
|     par_mapped[15] = par[4];
 | |
|     par_mapped[14] = par[4];
 | |
|     par_mapped[13] = par[4];
 | |
|     par_mapped[12] = par[4];
 | |
|     par_mapped[11] = par[3];
 | |
|     par_mapped[10] = par[3];
 | |
|     par_mapped[ 9] = par[2];
 | |
|     par_mapped[ 8] = par[2];
 | |
|     par_mapped[ 7] = par[2];
 | |
|     par_mapped[ 6] = par[2];
 | |
|     par_mapped[ 5] = par[1];
 | |
|     par_mapped[ 4] = par[1];
 | |
|     par_mapped[ 3] = par[1];
 | |
|     par_mapped[ 2] = par[0];
 | |
|     par_mapped[ 1] = par[0];
 | |
|     par_mapped[ 0] = par[0];
 | |
| }
 | |
| 
 | |
| static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
 | |
| {
 | |
|     if (full) {
 | |
|         par_mapped[33] =  par[19];
 | |
|         par_mapped[32] =  par[19];
 | |
|         par_mapped[31] =  par[18];
 | |
|         par_mapped[30] =  par[18];
 | |
|         par_mapped[29] =  par[18];
 | |
|         par_mapped[28] =  par[18];
 | |
|         par_mapped[27] =  par[17];
 | |
|         par_mapped[26] =  par[17];
 | |
|         par_mapped[25] =  par[16];
 | |
|         par_mapped[24] =  par[16];
 | |
|         par_mapped[23] =  par[15];
 | |
|         par_mapped[22] =  par[15];
 | |
|         par_mapped[21] =  par[14];
 | |
|         par_mapped[20] =  par[14];
 | |
|         par_mapped[19] =  par[13];
 | |
|         par_mapped[18] =  par[12];
 | |
|         par_mapped[17] =  par[11];
 | |
|     }
 | |
|     par_mapped[16] =  par[10];
 | |
|     par_mapped[15] =  par[ 9];
 | |
|     par_mapped[14] =  par[ 9];
 | |
|     par_mapped[13] =  par[ 8];
 | |
|     par_mapped[12] =  par[ 8];
 | |
|     par_mapped[11] =  par[ 7];
 | |
|     par_mapped[10] =  par[ 6];
 | |
|     par_mapped[ 9] =  par[ 5];
 | |
|     par_mapped[ 8] =  par[ 5];
 | |
|     par_mapped[ 7] =  par[ 4];
 | |
|     par_mapped[ 6] =  par[ 4];
 | |
|     par_mapped[ 5] =  par[ 3];
 | |
|     par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
 | |
|     par_mapped[ 3] =  par[ 2];
 | |
|     par_mapped[ 2] =  par[ 1];
 | |
|     par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
 | |
|     par_mapped[ 0] =  par[ 0];
 | |
| }
 | |
| 
 | |
| static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
 | |
| {
 | |
|     par[33] =  par[19];
 | |
|     par[32] =  par[19];
 | |
|     par[31] =  par[18];
 | |
|     par[30] =  par[18];
 | |
|     par[29] =  par[18];
 | |
|     par[28] =  par[18];
 | |
|     par[27] =  par[17];
 | |
|     par[26] =  par[17];
 | |
|     par[25] =  par[16];
 | |
|     par[24] =  par[16];
 | |
|     par[23] =  par[15];
 | |
|     par[22] =  par[15];
 | |
|     par[21] =  par[14];
 | |
|     par[20] =  par[14];
 | |
|     par[19] =  par[13];
 | |
|     par[18] =  par[12];
 | |
|     par[17] =  par[11];
 | |
|     par[16] =  par[10];
 | |
|     par[15] =  par[ 9];
 | |
|     par[14] =  par[ 9];
 | |
|     par[13] =  par[ 8];
 | |
|     par[12] =  par[ 8];
 | |
|     par[11] =  par[ 7];
 | |
|     par[10] =  par[ 6];
 | |
|     par[ 9] =  par[ 5];
 | |
|     par[ 8] =  par[ 5];
 | |
|     par[ 7] =  par[ 4];
 | |
|     par[ 6] =  par[ 4];
 | |
|     par[ 5] =  par[ 3];
 | |
|     par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
 | |
|     par[ 3] =  par[ 2];
 | |
|     par[ 2] =  par[ 1];
 | |
|     par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
 | |
|     par[ 0] =  par[ 0];
 | |
| }
 | |
| 
 | |
| static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
 | |
| {
 | |
|     LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
 | |
|     LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
 | |
|     float *peak_decay_nrg = ps->peak_decay_nrg;
 | |
|     float *power_smooth = ps->power_smooth;
 | |
|     float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
 | |
|     float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
 | |
|     float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
 | |
|     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
 | |
|     const float peak_decay_factor = 0.76592833836465f;
 | |
|     const float transient_impact  = 1.5f;
 | |
|     const float a_smooth          = 0.25f; ///< Smoothing coefficient
 | |
|     int i, k, m, n;
 | |
|     int n0 = 0, nL = 32;
 | |
| 
 | |
|     memset(power, 0, 34 * sizeof(*power));
 | |
| 
 | |
|     if (is34 != ps->is34bands_old) {
 | |
|         memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
 | |
|         memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
 | |
|         memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
 | |
|         memset(ps->delay,                  0, sizeof(ps->delay));
 | |
|         memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < NR_BANDS[is34]; k++) {
 | |
|         int i = k_to_i[k];
 | |
|         ps->dsp.add_squares(power[i], s[k], nL - n0);
 | |
|     }
 | |
| 
 | |
|     //Transient detection
 | |
|     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
 | |
|         for (n = n0; n < nL; n++) {
 | |
|             float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
 | |
|             float denom;
 | |
|             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
 | |
|             power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
 | |
|             peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
 | |
|             denom = transient_impact * peak_decay_diff_smooth[i];
 | |
|             transient_gain[i][n]   = (denom > power_smooth[i]) ?
 | |
|                                          power_smooth[i] / denom : 1.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //Decorrelation and transient reduction
 | |
|     //                         PS_AP_LINKS - 1
 | |
|     //                               -----
 | |
|     //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
 | |
|     //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
 | |
|     //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
 | |
|     //                               m = 0
 | |
|     //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
 | |
|     for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
 | |
|         int b = k_to_i[k];
 | |
|         float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
 | |
|         g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
 | |
|         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
 | |
|         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
 | |
|         for (m = 0; m < PS_AP_LINKS; m++) {
 | |
|             memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
 | |
|         }
 | |
|         ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
 | |
|                             phi_fract[is34][k],
 | |
|                             (const float (*)[2]) Q_fract_allpass[is34][k],
 | |
|                             transient_gain[b], g_decay_slope, nL - n0);
 | |
|     }
 | |
|     for (; k < SHORT_DELAY_BAND[is34]; k++) {
 | |
|         int i = k_to_i[k];
 | |
|         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
 | |
|         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
 | |
|         //H = delay 14
 | |
|         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
 | |
|                                 transient_gain[i], nL - n0);
 | |
|     }
 | |
|     for (; k < NR_BANDS[is34]; k++) {
 | |
|         int i = k_to_i[k];
 | |
|         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
 | |
|         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
 | |
|         //H = delay 1
 | |
|         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
 | |
|                                 transient_gain[i], nL - n0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
 | |
|                     int8_t           (*par)[PS_MAX_NR_IIDICC],
 | |
|                     int num_par, int num_env, int full)
 | |
| {
 | |
|     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
 | |
|     int e;
 | |
|     if (num_par == 20 || num_par == 11) {
 | |
|         for (e = 0; e < num_env; e++) {
 | |
|             map_idx_20_to_34(par_mapped[e], par[e], full);
 | |
|         }
 | |
|     } else if (num_par == 10 || num_par == 5) {
 | |
|         for (e = 0; e < num_env; e++) {
 | |
|             map_idx_10_to_34(par_mapped[e], par[e], full);
 | |
|         }
 | |
|     } else {
 | |
|         *p_par_mapped = par;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
 | |
|                     int8_t           (*par)[PS_MAX_NR_IIDICC],
 | |
|                     int num_par, int num_env, int full)
 | |
| {
 | |
|     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
 | |
|     int e;
 | |
|     if (num_par == 34 || num_par == 17) {
 | |
|         for (e = 0; e < num_env; e++) {
 | |
|             map_idx_34_to_20(par_mapped[e], par[e], full);
 | |
|         }
 | |
|     } else if (num_par == 10 || num_par == 5) {
 | |
|         for (e = 0; e < num_env; e++) {
 | |
|             map_idx_10_to_20(par_mapped[e], par[e], full);
 | |
|         }
 | |
|     } else {
 | |
|         *p_par_mapped = par;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
 | |
| {
 | |
|     int e, b, k;
 | |
| 
 | |
|     float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
 | |
|     float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
 | |
|     float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
 | |
|     float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
 | |
|     int8_t *opd_hist = ps->opd_hist;
 | |
|     int8_t *ipd_hist = ps->ipd_hist;
 | |
|     int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
 | |
|     int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
 | |
|     int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
 | |
|     int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
 | |
|     int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
 | |
|     int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
 | |
|     int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
 | |
|     int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
 | |
|     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
 | |
|     TABLE_CONST float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
 | |
| 
 | |
|     //Remapping
 | |
|     if (ps->num_env_old) {
 | |
|         memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
 | |
|         memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
 | |
|         memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
 | |
|         memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
 | |
|         memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
 | |
|         memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
 | |
|         memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
 | |
|         memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
 | |
|     }
 | |
| 
 | |
|     if (is34) {
 | |
|         remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
 | |
|         remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
 | |
|         if (ps->enable_ipdopd) {
 | |
|             remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
 | |
|             remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
 | |
|         }
 | |
|         if (!ps->is34bands_old) {
 | |
|             map_val_20_to_34(H11[0][0]);
 | |
|             map_val_20_to_34(H11[1][0]);
 | |
|             map_val_20_to_34(H12[0][0]);
 | |
|             map_val_20_to_34(H12[1][0]);
 | |
|             map_val_20_to_34(H21[0][0]);
 | |
|             map_val_20_to_34(H21[1][0]);
 | |
|             map_val_20_to_34(H22[0][0]);
 | |
|             map_val_20_to_34(H22[1][0]);
 | |
|             ipdopd_reset(ipd_hist, opd_hist);
 | |
|         }
 | |
|     } else {
 | |
|         remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
 | |
|         remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
 | |
|         if (ps->enable_ipdopd) {
 | |
|             remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
 | |
|             remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
 | |
|         }
 | |
|         if (ps->is34bands_old) {
 | |
|             map_val_34_to_20(H11[0][0]);
 | |
|             map_val_34_to_20(H11[1][0]);
 | |
|             map_val_34_to_20(H12[0][0]);
 | |
|             map_val_34_to_20(H12[1][0]);
 | |
|             map_val_34_to_20(H21[0][0]);
 | |
|             map_val_34_to_20(H21[1][0]);
 | |
|             map_val_34_to_20(H22[0][0]);
 | |
|             map_val_34_to_20(H22[1][0]);
 | |
|             ipdopd_reset(ipd_hist, opd_hist);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //Mixing
 | |
|     for (e = 0; e < ps->num_env; e++) {
 | |
|         for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
 | |
|             float h11, h12, h21, h22;
 | |
|             h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
 | |
|             h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
 | |
|             h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
 | |
|             h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
 | |
|             if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
 | |
|                 //The spec say says to only run this smoother when enable_ipdopd
 | |
|                 //is set but the reference decoder appears to run it constantly
 | |
|                 float h11i, h12i, h21i, h22i;
 | |
|                 float ipd_adj_re, ipd_adj_im;
 | |
|                 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
 | |
|                 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
 | |
|                 float opd_re = pd_re_smooth[opd_idx];
 | |
|                 float opd_im = pd_im_smooth[opd_idx];
 | |
|                 float ipd_re = pd_re_smooth[ipd_idx];
 | |
|                 float ipd_im = pd_im_smooth[ipd_idx];
 | |
|                 opd_hist[b] = opd_idx & 0x3F;
 | |
|                 ipd_hist[b] = ipd_idx & 0x3F;
 | |
| 
 | |
|                 ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
 | |
|                 ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
 | |
|                 h11i = h11 * opd_im;
 | |
|                 h11  = h11 * opd_re;
 | |
|                 h12i = h12 * ipd_adj_im;
 | |
|                 h12  = h12 * ipd_adj_re;
 | |
|                 h21i = h21 * opd_im;
 | |
|                 h21  = h21 * opd_re;
 | |
|                 h22i = h22 * ipd_adj_im;
 | |
|                 h22  = h22 * ipd_adj_re;
 | |
|                 H11[1][e+1][b] = h11i;
 | |
|                 H12[1][e+1][b] = h12i;
 | |
|                 H21[1][e+1][b] = h21i;
 | |
|                 H22[1][e+1][b] = h22i;
 | |
|             }
 | |
|             H11[0][e+1][b] = h11;
 | |
|             H12[0][e+1][b] = h12;
 | |
|             H21[0][e+1][b] = h21;
 | |
|             H22[0][e+1][b] = h22;
 | |
|         }
 | |
|         for (k = 0; k < NR_BANDS[is34]; k++) {
 | |
|             float h[2][4];
 | |
|             float h_step[2][4];
 | |
|             int start = ps->border_position[e];
 | |
|             int stop  = ps->border_position[e+1];
 | |
|             float width = 1.f / (stop - start);
 | |
|             b = k_to_i[k];
 | |
|             h[0][0] = H11[0][e][b];
 | |
|             h[0][1] = H12[0][e][b];
 | |
|             h[0][2] = H21[0][e][b];
 | |
|             h[0][3] = H22[0][e][b];
 | |
|             if (!PS_BASELINE && ps->enable_ipdopd) {
 | |
|             //Is this necessary? ps_04_new seems unchanged
 | |
|             if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
 | |
|                 h[1][0] = -H11[1][e][b];
 | |
|                 h[1][1] = -H12[1][e][b];
 | |
|                 h[1][2] = -H21[1][e][b];
 | |
|                 h[1][3] = -H22[1][e][b];
 | |
|             } else {
 | |
|                 h[1][0] = H11[1][e][b];
 | |
|                 h[1][1] = H12[1][e][b];
 | |
|                 h[1][2] = H21[1][e][b];
 | |
|                 h[1][3] = H22[1][e][b];
 | |
|             }
 | |
|             }
 | |
|             //Interpolation
 | |
|             h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
 | |
|             h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
 | |
|             h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
 | |
|             h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
 | |
|             if (!PS_BASELINE && ps->enable_ipdopd) {
 | |
|                 h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
 | |
|                 h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
 | |
|                 h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
 | |
|                 h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
 | |
|             }
 | |
|             ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
 | |
|                 l[k] + start + 1, r[k] + start + 1,
 | |
|                 h, h_step, stop - start);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
 | |
| {
 | |
|     LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
 | |
|     LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
 | |
|     const int len = 32;
 | |
|     int is34 = ps->is34bands;
 | |
| 
 | |
|     top += NR_BANDS[is34] - 64;
 | |
|     memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
 | |
|     if (top < NR_ALLPASS_BANDS[is34])
 | |
|         memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
 | |
| 
 | |
|     hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
 | |
|     decorrelation(ps, Rbuf, (const float (*)[32][2]) Lbuf, is34);
 | |
|     stereo_processing(ps, Lbuf, Rbuf, is34);
 | |
|     hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
 | |
|     hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define PS_INIT_VLC_STATIC(num, size) \
 | |
|     INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
 | |
|                     ps_tmp[num].ps_bits, 1, 1,                                          \
 | |
|                     ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
 | |
|                     size);
 | |
| 
 | |
| #define PS_VLC_ROW(name) \
 | |
|     { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
 | |
| 
 | |
| av_cold void ff_ps_init(void) {
 | |
|     // Syntax initialization
 | |
|     static const struct {
 | |
|         const void *ps_codes, *ps_bits;
 | |
|         const unsigned int table_size, elem_size;
 | |
|     } ps_tmp[] = {
 | |
|         PS_VLC_ROW(huff_iid_df1),
 | |
|         PS_VLC_ROW(huff_iid_dt1),
 | |
|         PS_VLC_ROW(huff_iid_df0),
 | |
|         PS_VLC_ROW(huff_iid_dt0),
 | |
|         PS_VLC_ROW(huff_icc_df),
 | |
|         PS_VLC_ROW(huff_icc_dt),
 | |
|         PS_VLC_ROW(huff_ipd_df),
 | |
|         PS_VLC_ROW(huff_ipd_dt),
 | |
|         PS_VLC_ROW(huff_opd_df),
 | |
|         PS_VLC_ROW(huff_opd_dt),
 | |
|     };
 | |
| 
 | |
|     PS_INIT_VLC_STATIC(0, 1544);
 | |
|     PS_INIT_VLC_STATIC(1,  832);
 | |
|     PS_INIT_VLC_STATIC(2, 1024);
 | |
|     PS_INIT_VLC_STATIC(3, 1036);
 | |
|     PS_INIT_VLC_STATIC(4,  544);
 | |
|     PS_INIT_VLC_STATIC(5,  544);
 | |
|     PS_INIT_VLC_STATIC(6,  512);
 | |
|     PS_INIT_VLC_STATIC(7,  512);
 | |
|     PS_INIT_VLC_STATIC(8,  512);
 | |
|     PS_INIT_VLC_STATIC(9,  512);
 | |
| 
 | |
|     ps_tableinit();
 | |
| }
 | |
| 
 | |
| av_cold void ff_ps_ctx_init(PSContext *ps)
 | |
| {
 | |
|     ff_psdsp_init(&ps->dsp);
 | |
| }
 |