Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com> Signed-off-by: Anton Khirnov <anton@khirnov.net> Signed-off-by: James Almer <jamrial@gmail.com>
		
			
				
	
	
		
			764 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			764 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * AAC encoder twoloop coder
 | 
						|
 * Copyright (C) 2008-2009 Konstantin Shishkov
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * AAC encoder twoloop coder
 | 
						|
 * @author Konstantin Shishkov, Claudio Freire
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * This file contains a template for the twoloop coder function.
 | 
						|
 * It needs to be provided, externally, as an already included declaration,
 | 
						|
 * the following functions from aacenc_quantization/util.h. They're not included
 | 
						|
 * explicitly here to make it possible to provide alternative implementations:
 | 
						|
 *  - quantize_band_cost
 | 
						|
 *  - abs_pow34_v
 | 
						|
 *  - find_max_val
 | 
						|
 *  - find_min_book
 | 
						|
 *  - find_form_factor
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef AVCODEC_AACCODER_TWOLOOP_H
 | 
						|
#define AVCODEC_AACCODER_TWOLOOP_H
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include "libavutil/mathematics.h"
 | 
						|
#include "mathops.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "aac.h"
 | 
						|
#include "aacenc.h"
 | 
						|
#include "aactab.h"
 | 
						|
#include "aacenctab.h"
 | 
						|
 | 
						|
/** Frequency in Hz for lower limit of noise substitution **/
 | 
						|
#define NOISE_LOW_LIMIT 4000
 | 
						|
 | 
						|
#define sclip(x) av_clip(x,60,218)
 | 
						|
 | 
						|
/* Reflects the cost to change codebooks */
 | 
						|
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
 | 
						|
{
 | 
						|
    return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * two-loop quantizers search taken from ISO 13818-7 Appendix C
 | 
						|
 */
 | 
						|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
 | 
						|
                                          AACEncContext *s,
 | 
						|
                                          SingleChannelElement *sce,
 | 
						|
                                          const float lambda)
 | 
						|
{
 | 
						|
    int start = 0, i, w, w2, g, recomprd;
 | 
						|
    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
 | 
						|
        / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
 | 
						|
        * (lambda / 120.f);
 | 
						|
    int refbits = destbits;
 | 
						|
    int toomanybits, toofewbits;
 | 
						|
    char nzs[128];
 | 
						|
    uint8_t nextband[128];
 | 
						|
    int maxsf[128], minsf[128];
 | 
						|
    float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
 | 
						|
    float maxvals[128], spread_thr_r[128];
 | 
						|
    float min_spread_thr_r, max_spread_thr_r;
 | 
						|
 | 
						|
    /**
 | 
						|
     * rdlambda controls the maximum tolerated distortion. Twoloop
 | 
						|
     * will keep iterating until it fails to lower it or it reaches
 | 
						|
     * ulimit * rdlambda. Keeping it low increases quality on difficult
 | 
						|
     * signals, but lower it too much, and bits will be taken from weak
 | 
						|
     * signals, creating "holes". A balance is necessary.
 | 
						|
     * rdmax and rdmin specify the relative deviation from rdlambda
 | 
						|
     * allowed for tonality compensation
 | 
						|
     */
 | 
						|
    float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
 | 
						|
    const float nzslope = 1.5f;
 | 
						|
    float rdmin = 0.03125f;
 | 
						|
    float rdmax = 1.0f;
 | 
						|
 | 
						|
    /**
 | 
						|
     * sfoffs controls an offset of optmium allocation that will be
 | 
						|
     * applied based on lambda. Keep it real and modest, the loop
 | 
						|
     * will take care of the rest, this just accelerates convergence
 | 
						|
     */
 | 
						|
    float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
 | 
						|
 | 
						|
    int fflag, minscaler, maxscaler, nminscaler;
 | 
						|
    int its  = 0;
 | 
						|
    int maxits = 30;
 | 
						|
    int allz = 0;
 | 
						|
    int tbits;
 | 
						|
    int cutoff = 1024;
 | 
						|
    int pns_start_pos;
 | 
						|
    int prev;
 | 
						|
 | 
						|
    /**
 | 
						|
     * zeroscale controls a multiplier of the threshold, if band energy
 | 
						|
     * is below this, a zero is forced. Keep it lower than 1, unless
 | 
						|
     * low lambda is used, because energy < threshold doesn't mean there's
 | 
						|
     * no audible signal outright, it's just energy. Also make it rise
 | 
						|
     * slower than rdlambda, as rdscale has due compensation with
 | 
						|
     * noisy band depriorization below, whereas zeroing logic is rather dumb
 | 
						|
     */
 | 
						|
    float zeroscale;
 | 
						|
    if (lambda > 120.f) {
 | 
						|
        zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
 | 
						|
    } else {
 | 
						|
        zeroscale = 1.f;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->psy.bitres.alloc >= 0) {
 | 
						|
        /**
 | 
						|
         * Psy granted us extra bits to use, from the reservoire
 | 
						|
         * adjust for lambda except what psy already did
 | 
						|
         */
 | 
						|
        destbits = s->psy.bitres.alloc
 | 
						|
            * (lambda / (avctx->global_quality ? avctx->global_quality : 120));
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
 | 
						|
        /**
 | 
						|
         * Constant Q-scale doesn't compensate MS coding on its own
 | 
						|
         * No need to be overly precise, this only controls RD
 | 
						|
         * adjustment CB limits when going overboard
 | 
						|
         */
 | 
						|
        if (s->options.mid_side && s->cur_type == TYPE_CPE)
 | 
						|
            destbits *= 2;
 | 
						|
 | 
						|
        /**
 | 
						|
         * When using a constant Q-scale, don't adjust bits, just use RD
 | 
						|
         * Don't let it go overboard, though... 8x psy target is enough
 | 
						|
         */
 | 
						|
        toomanybits = 5800;
 | 
						|
        toofewbits = destbits / 16;
 | 
						|
 | 
						|
        /** Don't offset scalers, just RD */
 | 
						|
        sfoffs = sce->ics.num_windows - 1;
 | 
						|
        rdlambda = sqrtf(rdlambda);
 | 
						|
 | 
						|
        /** search further */
 | 
						|
        maxits *= 2;
 | 
						|
    } else {
 | 
						|
        /* When using ABR, be strict, but a reasonable leeway is
 | 
						|
         * critical to allow RC to smoothly track desired bitrate
 | 
						|
         * without sudden quality drops that cause audible artifacts.
 | 
						|
         * Symmetry is also desirable, to avoid systematic bias.
 | 
						|
         */
 | 
						|
        toomanybits = destbits + destbits/8;
 | 
						|
        toofewbits = destbits - destbits/8;
 | 
						|
 | 
						|
        sfoffs = 0;
 | 
						|
        rdlambda = sqrtf(rdlambda);
 | 
						|
    }
 | 
						|
 | 
						|
    /** and zero out above cutoff frequency */
 | 
						|
    {
 | 
						|
        int wlen = 1024 / sce->ics.num_windows;
 | 
						|
        int bandwidth;
 | 
						|
 | 
						|
        /**
 | 
						|
         * Scale, psy gives us constant quality, this LP only scales
 | 
						|
         * bitrate by lambda, so we save bits on subjectively unimportant HF
 | 
						|
         * rather than increase quantization noise. Adjust nominal bitrate
 | 
						|
         * to effective bitrate according to encoding parameters,
 | 
						|
         * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
 | 
						|
         */
 | 
						|
        float rate_bandwidth_multiplier = 1.5f;
 | 
						|
        int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
 | 
						|
            ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
 | 
						|
            : (avctx->bit_rate / avctx->ch_layout.nb_channels);
 | 
						|
 | 
						|
        /** Compensate for extensions that increase efficiency */
 | 
						|
        if (s->options.pns || s->options.intensity_stereo)
 | 
						|
            frame_bit_rate *= 1.15f;
 | 
						|
 | 
						|
        if (avctx->cutoff > 0) {
 | 
						|
            bandwidth = avctx->cutoff;
 | 
						|
        } else {
 | 
						|
            bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
 | 
						|
            s->psy.cutoff = bandwidth;
 | 
						|
        }
 | 
						|
 | 
						|
        cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
 | 
						|
        pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * for values above this the decoder might end up in an endless loop
 | 
						|
     * due to always having more bits than what can be encoded.
 | 
						|
     */
 | 
						|
    destbits = FFMIN(destbits, 5800);
 | 
						|
    toomanybits = FFMIN(toomanybits, 5800);
 | 
						|
    toofewbits = FFMIN(toofewbits, 5800);
 | 
						|
    /**
 | 
						|
     * XXX: some heuristic to determine initial quantizers will reduce search time
 | 
						|
     * determine zero bands and upper distortion limits
 | 
						|
     */
 | 
						|
    min_spread_thr_r = -1;
 | 
						|
    max_spread_thr_r = -1;
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | 
						|
            int nz = 0;
 | 
						|
            float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
 | 
						|
                    sce->zeroes[(w+w2)*16+g] = 1;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                nz = 1;
 | 
						|
            }
 | 
						|
            if (!nz) {
 | 
						|
                uplim = 0.0f;
 | 
						|
            } else {
 | 
						|
                nz = 0;
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                    if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
 | 
						|
                        continue;
 | 
						|
                    uplim += band->threshold;
 | 
						|
                    energy += band->energy;
 | 
						|
                    spread += band->spread;
 | 
						|
                    nz++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            uplims[w*16+g] = uplim;
 | 
						|
            energies[w*16+g] = energy;
 | 
						|
            nzs[w*16+g] = nz;
 | 
						|
            sce->zeroes[w*16+g] = !nz;
 | 
						|
            allz |= nz;
 | 
						|
            if (nz && sce->can_pns[w*16+g]) {
 | 
						|
                spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
 | 
						|
                if (min_spread_thr_r < 0) {
 | 
						|
                    min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
 | 
						|
                } else {
 | 
						|
                    min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
 | 
						|
                    max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /** Compute initial scalers */
 | 
						|
    minscaler = 65535;
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (sce->zeroes[w*16+g]) {
 | 
						|
                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            /**
 | 
						|
             * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
 | 
						|
             * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
 | 
						|
             * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
 | 
						|
             * more robust.
 | 
						|
             */
 | 
						|
            sce->sf_idx[w*16+g] = av_clip(
 | 
						|
                SCALE_ONE_POS
 | 
						|
                    + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
 | 
						|
                    + sfoffs,
 | 
						|
                60, SCALE_MAX_POS);
 | 
						|
            minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /** Clip */
 | 
						|
    minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++)
 | 
						|
            if (!sce->zeroes[w*16+g])
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
 | 
						|
 | 
						|
    if (!allz)
 | 
						|
        return;
 | 
						|
    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
 | 
						|
    ff_quantize_band_cost_cache_init(s);
 | 
						|
 | 
						|
    for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i)
 | 
						|
        minsf[i] = 0;
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            const float *scaled = s->scoefs + start;
 | 
						|
            int minsfidx;
 | 
						|
            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
 | 
						|
            if (maxvals[w*16+g] > 0) {
 | 
						|
                minsfidx = coef2minsf(maxvals[w*16+g]);
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
 | 
						|
                    minsf[(w+w2)*16+g] = minsfidx;
 | 
						|
            }
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Scale uplims to match rate distortion to quality
 | 
						|
     * bu applying noisy band depriorization and tonal band priorization.
 | 
						|
     * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
 | 
						|
     * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
 | 
						|
     * rate distortion requirements.
 | 
						|
     */
 | 
						|
    memcpy(euplims, uplims, sizeof(euplims));
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        /** psy already priorizes transients to some extent */
 | 
						|
        float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (nzs[g] > 0) {
 | 
						|
                float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
 | 
						|
                float energy2uplim = find_form_factor(
 | 
						|
                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
 | 
						|
                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
 | 
						|
                    sce->coeffs + start,
 | 
						|
                    nzslope * cleanup_factor);
 | 
						|
                energy2uplim *= de_psy_factor;
 | 
						|
                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
 | 
						|
                    /** In ABR, we need to priorize less and let rate control do its thing */
 | 
						|
                    energy2uplim = sqrtf(energy2uplim);
 | 
						|
                }
 | 
						|
                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
 | 
						|
                uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
 | 
						|
                                  * sce->ics.group_len[w];
 | 
						|
 | 
						|
                energy2uplim = find_form_factor(
 | 
						|
                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
 | 
						|
                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
 | 
						|
                    sce->coeffs + start,
 | 
						|
                    2.0f);
 | 
						|
                energy2uplim *= de_psy_factor;
 | 
						|
                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
 | 
						|
                    /** In ABR, we need to priorize less and let rate control do its thing */
 | 
						|
                    energy2uplim = sqrtf(energy2uplim);
 | 
						|
                }
 | 
						|
                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
 | 
						|
                euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
 | 
						|
                    0.5f, 1.0f);
 | 
						|
            }
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
 | 
						|
        maxsf[i] = SCALE_MAX_POS;
 | 
						|
 | 
						|
    //perform two-loop search
 | 
						|
    //outer loop - improve quality
 | 
						|
    do {
 | 
						|
        //inner loop - quantize spectrum to fit into given number of bits
 | 
						|
        int overdist;
 | 
						|
        int qstep = its ? 1 : 32;
 | 
						|
        do {
 | 
						|
            int changed = 0;
 | 
						|
            prev = -1;
 | 
						|
            recomprd = 0;
 | 
						|
            tbits = 0;
 | 
						|
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                start = w*128;
 | 
						|
                for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
                    const float *coefs = &sce->coeffs[start];
 | 
						|
                    const float *scaled = &s->scoefs[start];
 | 
						|
                    int bits = 0;
 | 
						|
                    int cb;
 | 
						|
                    float dist = 0.0f;
 | 
						|
                    float qenergy = 0.0f;
 | 
						|
 | 
						|
                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
 | 
						|
                        start += sce->ics.swb_sizes[g];
 | 
						|
                        if (sce->can_pns[w*16+g]) {
 | 
						|
                            /** PNS isn't free */
 | 
						|
                            tbits += ff_pns_bits(sce, w, g);
 | 
						|
                        }
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                        int b;
 | 
						|
                        float sqenergy;
 | 
						|
                        dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | 
						|
                                                   scaled + w2*128,
 | 
						|
                                                   sce->ics.swb_sizes[g],
 | 
						|
                                                   sce->sf_idx[w*16+g],
 | 
						|
                                                   cb,
 | 
						|
                                                   1.0f,
 | 
						|
                                                   INFINITY,
 | 
						|
                                                   &b, &sqenergy,
 | 
						|
                                                   0);
 | 
						|
                        bits += b;
 | 
						|
                        qenergy += sqenergy;
 | 
						|
                    }
 | 
						|
                    dists[w*16+g] = dist - bits;
 | 
						|
                    qenergies[w*16+g] = qenergy;
 | 
						|
                    if (prev != -1) {
 | 
						|
                        int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
 | 
						|
                        bits += ff_aac_scalefactor_bits[sfdiff];
 | 
						|
                    }
 | 
						|
                    tbits += bits;
 | 
						|
                    start += sce->ics.swb_sizes[g];
 | 
						|
                    prev = sce->sf_idx[w*16+g];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (tbits > toomanybits) {
 | 
						|
                recomprd = 1;
 | 
						|
                for (i = 0; i < 128; i++) {
 | 
						|
                    if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
 | 
						|
                        int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
 | 
						|
                        int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
 | 
						|
                        if (new_sf != sce->sf_idx[i]) {
 | 
						|
                            sce->sf_idx[i] = new_sf;
 | 
						|
                            changed = 1;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (tbits < toofewbits) {
 | 
						|
                recomprd = 1;
 | 
						|
                for (i = 0; i < 128; i++) {
 | 
						|
                    if (sce->sf_idx[i] > SCALE_ONE_POS) {
 | 
						|
                        int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep);
 | 
						|
                        if (new_sf != sce->sf_idx[i]) {
 | 
						|
                            sce->sf_idx[i] = new_sf;
 | 
						|
                            changed = 1;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            qstep >>= 1;
 | 
						|
            if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
 | 
						|
                qstep = 1;
 | 
						|
        } while (qstep);
 | 
						|
 | 
						|
        overdist = 1;
 | 
						|
        fflag = tbits < toofewbits;
 | 
						|
        for (i = 0; i < 2 && (overdist || recomprd); ++i) {
 | 
						|
            if (recomprd) {
 | 
						|
                /** Must recompute distortion */
 | 
						|
                prev = -1;
 | 
						|
                tbits = 0;
 | 
						|
                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                    start = w*128;
 | 
						|
                    for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
                        const float *coefs = sce->coeffs + start;
 | 
						|
                        const float *scaled = s->scoefs + start;
 | 
						|
                        int bits = 0;
 | 
						|
                        int cb;
 | 
						|
                        float dist = 0.0f;
 | 
						|
                        float qenergy = 0.0f;
 | 
						|
 | 
						|
                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
 | 
						|
                            start += sce->ics.swb_sizes[g];
 | 
						|
                            if (sce->can_pns[w*16+g]) {
 | 
						|
                                /** PNS isn't free */
 | 
						|
                                tbits += ff_pns_bits(sce, w, g);
 | 
						|
                            }
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                            int b;
 | 
						|
                            float sqenergy;
 | 
						|
                            dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | 
						|
                                                    scaled + w2*128,
 | 
						|
                                                    sce->ics.swb_sizes[g],
 | 
						|
                                                    sce->sf_idx[w*16+g],
 | 
						|
                                                    cb,
 | 
						|
                                                    1.0f,
 | 
						|
                                                    INFINITY,
 | 
						|
                                                    &b, &sqenergy,
 | 
						|
                                                    0);
 | 
						|
                            bits += b;
 | 
						|
                            qenergy += sqenergy;
 | 
						|
                        }
 | 
						|
                        dists[w*16+g] = dist - bits;
 | 
						|
                        qenergies[w*16+g] = qenergy;
 | 
						|
                        if (prev != -1) {
 | 
						|
                            int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
 | 
						|
                            bits += ff_aac_scalefactor_bits[sfdiff];
 | 
						|
                        }
 | 
						|
                        tbits += bits;
 | 
						|
                        start += sce->ics.swb_sizes[g];
 | 
						|
                        prev = sce->sf_idx[w*16+g];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
 | 
						|
                float maxoverdist = 0.0f;
 | 
						|
                float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
 | 
						|
                overdist = recomprd = 0;
 | 
						|
                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                    for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | 
						|
                        if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
 | 
						|
                            float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
 | 
						|
                            maxoverdist = FFMAX(maxoverdist, ovrdist);
 | 
						|
                            overdist++;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (overdist) {
 | 
						|
                    /* We have overdistorted bands, trade for zeroes (that can be noise)
 | 
						|
                     * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
 | 
						|
                     */
 | 
						|
                    float minspread = max_spread_thr_r;
 | 
						|
                    float maxspread = min_spread_thr_r;
 | 
						|
                    float zspread;
 | 
						|
                    int zeroable = 0;
 | 
						|
                    int zeroed = 0;
 | 
						|
                    int maxzeroed, zloop;
 | 
						|
                    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | 
						|
                            if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
 | 
						|
                                minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
 | 
						|
                                maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
 | 
						|
                                zeroable++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    zspread = (maxspread-minspread) * 0.0125f + minspread;
 | 
						|
                    /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
 | 
						|
                     * and forced the hand of the later search_for_pns step.
 | 
						|
                     * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
 | 
						|
                     * and leave further PNSing to search_for_pns if worthwhile.
 | 
						|
                     */
 | 
						|
                    zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
 | 
						|
                        ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
 | 
						|
                    maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
 | 
						|
                    for (zloop = 0; zloop < 2; zloop++) {
 | 
						|
                        /* Two passes: first distorted stuff - two birds in one shot and all that,
 | 
						|
                         * then anything viable. Viable means not zero, but either CB=zero-able
 | 
						|
                         * (too high SF), not SF <= 1 (that means we'd be operating at very high
 | 
						|
                         * quality, we don't want PNS when doing VHQ), PNS allowed, and within
 | 
						|
                         * the lowest ranking percentile.
 | 
						|
                         */
 | 
						|
                        float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
 | 
						|
                        int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
 | 
						|
                        int mcb;
 | 
						|
                        for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
 | 
						|
                            if (sce->ics.swb_offset[g] < pns_start_pos)
 | 
						|
                                continue;
 | 
						|
                            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                                if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
 | 
						|
                                    && sce->sf_idx[w*16+g] > loopminsf
 | 
						|
                                    && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
 | 
						|
                                        || (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
 | 
						|
                                    sce->zeroes[w*16+g] = 1;
 | 
						|
                                    sce->band_type[w*16+g] = 0;
 | 
						|
                                    zeroed++;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    if (zeroed)
 | 
						|
                        recomprd = fflag = 1;
 | 
						|
                } else {
 | 
						|
                    overdist = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        minscaler = SCALE_MAX_POS;
 | 
						|
        maxscaler = 0;
 | 
						|
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
            for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
                if (!sce->zeroes[w*16+g]) {
 | 
						|
                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
 | 
						|
                    maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
 | 
						|
        prev = -1;
 | 
						|
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
            /** Start with big steps, end up fine-tunning */
 | 
						|
            int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
 | 
						|
            int edepth = depth+2;
 | 
						|
            float uplmax = its / (maxits*0.25f) + 1.0f;
 | 
						|
            uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
 | 
						|
            start = w * 128;
 | 
						|
            for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
                int prevsc = sce->sf_idx[w*16+g];
 | 
						|
                if (prev < 0 && !sce->zeroes[w*16+g])
 | 
						|
                    prev = sce->sf_idx[0];
 | 
						|
                if (!sce->zeroes[w*16+g]) {
 | 
						|
                    const float *coefs = sce->coeffs + start;
 | 
						|
                    const float *scaled = s->scoefs + start;
 | 
						|
                    int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                    int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
 | 
						|
                    int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
 | 
						|
                    if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) {
 | 
						|
                        /* Try to make sure there is some energy in every nonzero band
 | 
						|
                         * NOTE: This algorithm must be forcibly imbalanced, pushing harder
 | 
						|
                         *  on holes or more distorted bands at first, otherwise there's
 | 
						|
                         *  no net gain (since the next iteration will offset all bands
 | 
						|
                         *  on the opposite direction to compensate for extra bits)
 | 
						|
                         */
 | 
						|
                        for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
 | 
						|
                            int cb, bits;
 | 
						|
                            float dist, qenergy;
 | 
						|
                            int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
 | 
						|
                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                            dist = qenergy = 0.f;
 | 
						|
                            bits = 0;
 | 
						|
                            if (!cb) {
 | 
						|
                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
 | 
						|
                            } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
 | 
						|
                                break;
 | 
						|
                            }
 | 
						|
                            /* !g is the DC band, it's important, since quantization error here
 | 
						|
                             * applies to less than a cycle, it creates horrible intermodulation
 | 
						|
                             * distortion if it doesn't stick to what psy requests
 | 
						|
                             */
 | 
						|
                            if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
 | 
						|
                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
 | 
						|
                            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                                int b;
 | 
						|
                                float sqenergy;
 | 
						|
                                dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | 
						|
                                                        scaled + w2*128,
 | 
						|
                                                        sce->ics.swb_sizes[g],
 | 
						|
                                                        sce->sf_idx[w*16+g]-1,
 | 
						|
                                                        cb,
 | 
						|
                                                        1.0f,
 | 
						|
                                                        INFINITY,
 | 
						|
                                                        &b, &sqenergy,
 | 
						|
                                                        0);
 | 
						|
                                bits += b;
 | 
						|
                                qenergy += sqenergy;
 | 
						|
                            }
 | 
						|
                            sce->sf_idx[w*16+g]--;
 | 
						|
                            dists[w*16+g] = dist - bits;
 | 
						|
                            qenergies[w*16+g] = qenergy;
 | 
						|
                            if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
 | 
						|
                                    (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
 | 
						|
                                    && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
 | 
						|
                                ) )) {
 | 
						|
                                break;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
 | 
						|
                            && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
 | 
						|
                            && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
 | 
						|
                        ) {
 | 
						|
                        /** Um... over target. Save bits for more important stuff. */
 | 
						|
                        for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
 | 
						|
                            int cb, bits;
 | 
						|
                            float dist, qenergy;
 | 
						|
                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
 | 
						|
                            if (cb > 0) {
 | 
						|
                                dist = qenergy = 0.f;
 | 
						|
                                bits = 0;
 | 
						|
                                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                                    int b;
 | 
						|
                                    float sqenergy;
 | 
						|
                                    dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | 
						|
                                                            scaled + w2*128,
 | 
						|
                                                            sce->ics.swb_sizes[g],
 | 
						|
                                                            sce->sf_idx[w*16+g]+1,
 | 
						|
                                                            cb,
 | 
						|
                                                            1.0f,
 | 
						|
                                                            INFINITY,
 | 
						|
                                                            &b, &sqenergy,
 | 
						|
                                                            0);
 | 
						|
                                    bits += b;
 | 
						|
                                    qenergy += sqenergy;
 | 
						|
                                }
 | 
						|
                                dist -= bits;
 | 
						|
                                if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
 | 
						|
                                    sce->sf_idx[w*16+g]++;
 | 
						|
                                    dists[w*16+g] = dist;
 | 
						|
                                    qenergies[w*16+g] = qenergy;
 | 
						|
                                } else {
 | 
						|
                                    break;
 | 
						|
                                }
 | 
						|
                            } else {
 | 
						|
                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
 | 
						|
                                break;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
 | 
						|
                    if (sce->sf_idx[w*16+g] != prevsc)
 | 
						|
                        fflag = 1;
 | 
						|
                    nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
 | 
						|
                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                }
 | 
						|
                start += sce->ics.swb_sizes[g];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /** SF difference limit violation risk. Must re-clamp. */
 | 
						|
        prev = -1;
 | 
						|
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
            for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
                if (!sce->zeroes[w*16+g]) {
 | 
						|
                    int prevsf = sce->sf_idx[w*16+g];
 | 
						|
                    if (prev < 0)
 | 
						|
                        prev = prevsf;
 | 
						|
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
 | 
						|
                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                    prev = sce->sf_idx[w*16+g];
 | 
						|
                    if (!fflag && prevsf != sce->sf_idx[w*16+g])
 | 
						|
                        fflag = 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        its++;
 | 
						|
    } while (fflag && its < maxits);
 | 
						|
 | 
						|
    /** Scout out next nonzero bands */
 | 
						|
    ff_init_nextband_map(sce, nextband);
 | 
						|
 | 
						|
    prev = -1;
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        /** Make sure proper codebooks are set */
 | 
						|
        for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
            if (!sce->zeroes[w*16+g]) {
 | 
						|
                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                if (sce->band_type[w*16+g] <= 0) {
 | 
						|
                    if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
 | 
						|
                        /** Cannot zero out, make sure it's not attempted */
 | 
						|
                        sce->band_type[w*16+g] = 1;
 | 
						|
                    } else {
 | 
						|
                        sce->zeroes[w*16+g] = 1;
 | 
						|
                        sce->band_type[w*16+g] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                sce->band_type[w*16+g] = 0;
 | 
						|
            }
 | 
						|
            /** Check that there's no SF delta range violations */
 | 
						|
            if (!sce->zeroes[w*16+g]) {
 | 
						|
                if (prev != -1) {
 | 
						|
                    av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
 | 
						|
                    av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
 | 
						|
                } else if (sce->zeroes[0]) {
 | 
						|
                    /** Set global gain to something useful */
 | 
						|
                    sce->sf_idx[0] = sce->sf_idx[w*16+g];
 | 
						|
                }
 | 
						|
                prev = sce->sf_idx[w*16+g];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif /* AVCODEC_AACCODER_TWOLOOP_H */
 |