* commit '9d4da474f5f40b019cb4cb931c8499deee586174': lls: move to the private namespace Conflicts: libavutil/version.h Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			288 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * LPC utility code
 | 
						|
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/common.h"
 | 
						|
#include "libavutil/lls.h"
 | 
						|
 | 
						|
#define LPC_USE_DOUBLE
 | 
						|
#include "lpc.h"
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Apply Welch window function to audio block
 | 
						|
 */
 | 
						|
static void lpc_apply_welch_window_c(const int32_t *data, int len,
 | 
						|
                                     double *w_data)
 | 
						|
{
 | 
						|
    int i, n2;
 | 
						|
    double w;
 | 
						|
    double c;
 | 
						|
 | 
						|
    /* The optimization in commit fa4ed8c does not support odd len.
 | 
						|
     * If someone wants odd len extend that change. */
 | 
						|
    av_assert2(!(len & 1));
 | 
						|
 | 
						|
    n2 = (len >> 1);
 | 
						|
    c = 2.0 / (len - 1.0);
 | 
						|
 | 
						|
    w_data+=n2;
 | 
						|
      data+=n2;
 | 
						|
    for(i=0; i<n2; i++) {
 | 
						|
        w = c - n2 + i;
 | 
						|
        w = 1.0 - (w * w);
 | 
						|
        w_data[-i-1] = data[-i-1] * w;
 | 
						|
        w_data[+i  ] = data[+i  ] * w;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate autocorrelation data from audio samples
 | 
						|
 * A Welch window function is applied before calculation.
 | 
						|
 */
 | 
						|
static void lpc_compute_autocorr_c(const double *data, int len, int lag,
 | 
						|
                                   double *autoc)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for(j=0; j<lag; j+=2){
 | 
						|
        double sum0 = 1.0, sum1 = 1.0;
 | 
						|
        for(i=j; i<len; i++){
 | 
						|
            sum0 += data[i] * data[i-j];
 | 
						|
            sum1 += data[i] * data[i-j-1];
 | 
						|
        }
 | 
						|
        autoc[j  ] = sum0;
 | 
						|
        autoc[j+1] = sum1;
 | 
						|
    }
 | 
						|
 | 
						|
    if(j==lag){
 | 
						|
        double sum = 1.0;
 | 
						|
        for(i=j-1; i<len; i+=2){
 | 
						|
            sum += data[i  ] * data[i-j  ]
 | 
						|
                 + data[i+1] * data[i-j+1];
 | 
						|
        }
 | 
						|
        autoc[j] = sum;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Quantize LPC coefficients
 | 
						|
 */
 | 
						|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
 | 
						|
                               int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    double cmax, error;
 | 
						|
    int32_t qmax;
 | 
						|
    int sh;
 | 
						|
 | 
						|
    /* define maximum levels */
 | 
						|
    qmax = (1 << (precision - 1)) - 1;
 | 
						|
 | 
						|
    /* find maximum coefficient value */
 | 
						|
    cmax = 0.0;
 | 
						|
    for(i=0; i<order; i++) {
 | 
						|
        cmax= FFMAX(cmax, fabs(lpc_in[i]));
 | 
						|
    }
 | 
						|
 | 
						|
    /* if maximum value quantizes to zero, return all zeros */
 | 
						|
    if(cmax * (1 << max_shift) < 1.0) {
 | 
						|
        *shift = zero_shift;
 | 
						|
        memset(lpc_out, 0, sizeof(int32_t) * order);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate level shift which scales max coeff to available bits */
 | 
						|
    sh = max_shift;
 | 
						|
    while((cmax * (1 << sh) > qmax) && (sh > 0)) {
 | 
						|
        sh--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* since negative shift values are unsupported in decoder, scale down
 | 
						|
       coefficients instead */
 | 
						|
    if(sh == 0 && cmax > qmax) {
 | 
						|
        double scale = ((double)qmax) / cmax;
 | 
						|
        for(i=0; i<order; i++) {
 | 
						|
            lpc_in[i] *= scale;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* output quantized coefficients and level shift */
 | 
						|
    error=0;
 | 
						|
    for(i=0; i<order; i++) {
 | 
						|
        error -= lpc_in[i] * (1 << sh);
 | 
						|
        lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
 | 
						|
        error -= lpc_out[i];
 | 
						|
    }
 | 
						|
    *shift = sh;
 | 
						|
}
 | 
						|
 | 
						|
static int estimate_best_order(double *ref, int min_order, int max_order)
 | 
						|
{
 | 
						|
    int i, est;
 | 
						|
 | 
						|
    est = min_order;
 | 
						|
    for(i=max_order-1; i>=min_order-1; i--) {
 | 
						|
        if(ref[i] > 0.10) {
 | 
						|
            est = i+1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return est;
 | 
						|
}
 | 
						|
 | 
						|
int ff_lpc_calc_ref_coefs(LPCContext *s,
 | 
						|
                          const int32_t *samples, int order, double *ref)
 | 
						|
{
 | 
						|
    double autoc[MAX_LPC_ORDER + 1];
 | 
						|
 | 
						|
    s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
 | 
						|
    s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
 | 
						|
    compute_ref_coefs(autoc, order, ref, NULL);
 | 
						|
 | 
						|
    return order;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate LPC coefficients for multiple orders
 | 
						|
 *
 | 
						|
 * @param lpc_type LPC method for determining coefficients,
 | 
						|
 *                 see #FFLPCType for details
 | 
						|
 */
 | 
						|
int ff_lpc_calc_coefs(LPCContext *s,
 | 
						|
                      const int32_t *samples, int blocksize, int min_order,
 | 
						|
                      int max_order, int precision,
 | 
						|
                      int32_t coefs[][MAX_LPC_ORDER], int *shift,
 | 
						|
                      enum FFLPCType lpc_type, int lpc_passes,
 | 
						|
                      int omethod, int max_shift, int zero_shift)
 | 
						|
{
 | 
						|
    double autoc[MAX_LPC_ORDER+1];
 | 
						|
    double ref[MAX_LPC_ORDER];
 | 
						|
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
						|
    int i, j, pass;
 | 
						|
    int opt_order;
 | 
						|
 | 
						|
    av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
 | 
						|
           lpc_type > FF_LPC_TYPE_FIXED);
 | 
						|
 | 
						|
    /* reinit LPC context if parameters have changed */
 | 
						|
    if (blocksize != s->blocksize || max_order != s->max_order ||
 | 
						|
        lpc_type  != s->lpc_type) {
 | 
						|
        ff_lpc_end(s);
 | 
						|
        ff_lpc_init(s, blocksize, max_order, lpc_type);
 | 
						|
    }
 | 
						|
 | 
						|
    if (lpc_type == FF_LPC_TYPE_LEVINSON) {
 | 
						|
        s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
 | 
						|
 | 
						|
        s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
 | 
						|
 | 
						|
        compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
 | 
						|
 | 
						|
        for(i=0; i<max_order; i++)
 | 
						|
            ref[i] = fabs(lpc[i][i]);
 | 
						|
    } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
 | 
						|
        LLSModel m[2];
 | 
						|
        double var[MAX_LPC_ORDER+1], av_uninit(weight);
 | 
						|
 | 
						|
        if(lpc_passes <= 0)
 | 
						|
            lpc_passes = 2;
 | 
						|
 | 
						|
        for(pass=0; pass<lpc_passes; pass++){
 | 
						|
            avpriv_init_lls(&m[pass&1], max_order);
 | 
						|
 | 
						|
            weight=0;
 | 
						|
            for(i=max_order; i<blocksize; i++){
 | 
						|
                for(j=0; j<=max_order; j++)
 | 
						|
                    var[j]= samples[i-j];
 | 
						|
 | 
						|
                if(pass){
 | 
						|
                    double eval, inv, rinv;
 | 
						|
                    eval= avpriv_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
 | 
						|
                    eval= (512>>pass) + fabs(eval - var[0]);
 | 
						|
                    inv = 1/eval;
 | 
						|
                    rinv = sqrt(inv);
 | 
						|
                    for(j=0; j<=max_order; j++)
 | 
						|
                        var[j] *= rinv;
 | 
						|
                    weight += inv;
 | 
						|
                }else
 | 
						|
                    weight++;
 | 
						|
 | 
						|
                avpriv_update_lls(&m[pass&1], var, 1.0);
 | 
						|
            }
 | 
						|
            avpriv_solve_lls(&m[pass&1], 0.001, 0);
 | 
						|
        }
 | 
						|
 | 
						|
        for(i=0; i<max_order; i++){
 | 
						|
            for(j=0; j<max_order; j++)
 | 
						|
                lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
 | 
						|
            ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
 | 
						|
        }
 | 
						|
        for(i=max_order-1; i>0; i--)
 | 
						|
            ref[i] = ref[i-1] - ref[i];
 | 
						|
    } else
 | 
						|
        av_assert0(0);
 | 
						|
    opt_order = max_order;
 | 
						|
 | 
						|
    if(omethod == ORDER_METHOD_EST) {
 | 
						|
        opt_order = estimate_best_order(ref, min_order, max_order);
 | 
						|
        i = opt_order-1;
 | 
						|
        quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
 | 
						|
    } else {
 | 
						|
        for(i=min_order-1; i<max_order; i++) {
 | 
						|
            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return opt_order;
 | 
						|
}
 | 
						|
 | 
						|
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
 | 
						|
                        enum FFLPCType lpc_type)
 | 
						|
{
 | 
						|
    s->blocksize = blocksize;
 | 
						|
    s->max_order = max_order;
 | 
						|
    s->lpc_type  = lpc_type;
 | 
						|
 | 
						|
    if (lpc_type == FF_LPC_TYPE_LEVINSON) {
 | 
						|
        s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
 | 
						|
                                        sizeof(*s->windowed_samples));
 | 
						|
        if (!s->windowed_buffer)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
 | 
						|
    } else {
 | 
						|
        s->windowed_samples = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    s->lpc_apply_welch_window = lpc_apply_welch_window_c;
 | 
						|
    s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
 | 
						|
 | 
						|
    if (ARCH_X86)
 | 
						|
        ff_lpc_init_x86(s);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
av_cold void ff_lpc_end(LPCContext *s)
 | 
						|
{
 | 
						|
    av_freep(&s->windowed_buffer);
 | 
						|
}
 |