Fixes parsing small timebases from expressions (where the expression API converts the result to double), like in this command line: ffprobe -f lavfi -i testsrc=d=1,settb=1/2000000000 -show_streams -show_entries stream=time_base Before the patch timebase was parsed as 1/1999999999. Signed-off-by: Marton Balint <cus@passwd.hu>
		
			
				
	
	
		
			194 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * rational numbers
 | 
						|
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * rational numbers
 | 
						|
 * @author Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 */
 | 
						|
 | 
						|
#include "avassert.h"
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#include "mathematics.h"
 | 
						|
#include "rational.h"
 | 
						|
 | 
						|
int av_reduce(int *dst_num, int *dst_den,
 | 
						|
              int64_t num, int64_t den, int64_t max)
 | 
						|
{
 | 
						|
    AVRational a0 = { 0, 1 }, a1 = { 1, 0 };
 | 
						|
    int sign = (num < 0) ^ (den < 0);
 | 
						|
    int64_t gcd = av_gcd(FFABS(num), FFABS(den));
 | 
						|
 | 
						|
    if (gcd) {
 | 
						|
        num = FFABS(num) / gcd;
 | 
						|
        den = FFABS(den) / gcd;
 | 
						|
    }
 | 
						|
    if (num <= max && den <= max) {
 | 
						|
        a1 = (AVRational) { num, den };
 | 
						|
        den = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    while (den) {
 | 
						|
        uint64_t x        = num / den;
 | 
						|
        int64_t next_den  = num - den * x;
 | 
						|
        int64_t a2n       = x * a1.num + a0.num;
 | 
						|
        int64_t a2d       = x * a1.den + a0.den;
 | 
						|
 | 
						|
        if (a2n > max || a2d > max) {
 | 
						|
            if (a1.num) x =          (max - a0.num) / a1.num;
 | 
						|
            if (a1.den) x = FFMIN(x, (max - a0.den) / a1.den);
 | 
						|
 | 
						|
            if (den * (2 * x * a1.den + a0.den) > num * a1.den)
 | 
						|
                a1 = (AVRational) { x * a1.num + a0.num, x * a1.den + a0.den };
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        a0  = a1;
 | 
						|
        a1  = (AVRational) { a2n, a2d };
 | 
						|
        num = den;
 | 
						|
        den = next_den;
 | 
						|
    }
 | 
						|
    av_assert2(av_gcd(a1.num, a1.den) <= 1U);
 | 
						|
    av_assert2(a1.num <= max && a1.den <= max);
 | 
						|
 | 
						|
    *dst_num = sign ? -a1.num : a1.num;
 | 
						|
    *dst_den = a1.den;
 | 
						|
 | 
						|
    return den == 0;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_mul_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    av_reduce(&b.num, &b.den,
 | 
						|
               b.num * (int64_t) c.num,
 | 
						|
               b.den * (int64_t) c.den, INT_MAX);
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_div_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    return av_mul_q(b, (AVRational) { c.den, c.num });
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_add_q(AVRational b, AVRational c) {
 | 
						|
    av_reduce(&b.num, &b.den,
 | 
						|
               b.num * (int64_t) c.den +
 | 
						|
               c.num * (int64_t) b.den,
 | 
						|
               b.den * (int64_t) c.den, INT_MAX);
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_sub_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    return av_add_q(b, (AVRational) { -c.num, c.den });
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_d2q(double d, int max)
 | 
						|
{
 | 
						|
    AVRational a;
 | 
						|
    int exponent;
 | 
						|
    int64_t den;
 | 
						|
    if (isnan(d))
 | 
						|
        return (AVRational) { 0,0 };
 | 
						|
    if (fabs(d) > INT_MAX + 3LL)
 | 
						|
        return (AVRational) { d < 0 ? -1 : 1, 0 };
 | 
						|
    frexp(d, &exponent);
 | 
						|
    exponent = FFMAX(exponent-1, 0);
 | 
						|
    den = 1LL << (62 - exponent);
 | 
						|
    // (int64_t)rint() and llrint() do not work with gcc on ia64 and sparc64,
 | 
						|
    // see Ticket2713 for affected gcc/glibc versions
 | 
						|
    av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, max);
 | 
						|
    if ((!a.num || !a.den) && d && max>0 && max<INT_MAX)
 | 
						|
        av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, INT_MAX);
 | 
						|
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
 | 
						|
{
 | 
						|
    /* n/d is q, a/b is the median between q1 and q2 */
 | 
						|
    int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
 | 
						|
    int64_t b = 2 * (int64_t)q1.den * q2.den;
 | 
						|
 | 
						|
    /* rnd_up(a*d/b) > n => a*d/b > n */
 | 
						|
    int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
 | 
						|
 | 
						|
    /* rnd_down(a*d/b) < n => a*d/b < n */
 | 
						|
    int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
 | 
						|
 | 
						|
    return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
 | 
						|
}
 | 
						|
 | 
						|
int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
 | 
						|
{
 | 
						|
    int i, nearest_q_idx = 0;
 | 
						|
    for (i = 0; q_list[i].den; i++)
 | 
						|
        if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
 | 
						|
            nearest_q_idx = i;
 | 
						|
 | 
						|
    return nearest_q_idx;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t av_q2intfloat(AVRational q) {
 | 
						|
    int64_t n;
 | 
						|
    int shift;
 | 
						|
    int sign = 0;
 | 
						|
 | 
						|
    if (q.den < 0) {
 | 
						|
        q.den *= -1;
 | 
						|
        q.num *= -1;
 | 
						|
    }
 | 
						|
    if (q.num < 0) {
 | 
						|
        q.num *= -1;
 | 
						|
        sign = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!q.num && !q.den) return 0xFFC00000;
 | 
						|
    if (!q.num) return 0;
 | 
						|
    if (!q.den) return 0x7F800000 | (q.num & 0x80000000);
 | 
						|
 | 
						|
    shift = 23 + av_log2(q.den) - av_log2(q.num);
 | 
						|
    if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
 | 
						|
    else            n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
 | 
						|
 | 
						|
    shift -= n >= (1<<24);
 | 
						|
    shift += n <  (1<<23);
 | 
						|
 | 
						|
    if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
 | 
						|
    else            n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
 | 
						|
 | 
						|
    av_assert1(n <  (1<<24));
 | 
						|
    av_assert1(n >= (1<<23));
 | 
						|
 | 
						|
    return sign<<31 | (150-shift)<<23 | (n - (1<<23));
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_gcd_q(AVRational a, AVRational b, int max_den, AVRational def)
 | 
						|
{
 | 
						|
    int64_t gcd, lcm;
 | 
						|
 | 
						|
    gcd = av_gcd(a.den, b.den);
 | 
						|
    lcm = (a.den / gcd) * b.den;
 | 
						|
    return lcm < max_den ? av_make_q(av_gcd(a.num, b.num), lcm) : def;
 | 
						|
}
 |