Fixes: CID1452425 Logically dead code Sponsored-by: Sovereign Tech Fund Reviewed-by: Peter Ross <pross@xvid.org> Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			3207 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3207 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2003-2004 The FFmpeg project
 | |
|  * Copyright (C) 2019 Peter Ross
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * On2 VP3/VP4 Video Decoder
 | |
|  *
 | |
|  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 | |
|  * For more information about the VP3 coding process, visit:
 | |
|  *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 | |
|  *
 | |
|  * Theora decoder by Alex Beregszaszi
 | |
|  */
 | |
| 
 | |
| #include "config_components.h"
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/emms.h"
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/mem.h"
 | |
| #include "libavutil/mem_internal.h"
 | |
| #include "libavutil/thread.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "codec_internal.h"
 | |
| #include "decode.h"
 | |
| #include "get_bits.h"
 | |
| #include "hpeldsp.h"
 | |
| #include "internal.h"
 | |
| #include "jpegquanttables.h"
 | |
| #include "mathops.h"
 | |
| #include "progressframe.h"
 | |
| #include "refstruct.h"
 | |
| #include "thread.h"
 | |
| #include "videodsp.h"
 | |
| #include "vp3data.h"
 | |
| #include "vp4data.h"
 | |
| #include "vp3dsp.h"
 | |
| #include "xiph.h"
 | |
| 
 | |
| #define VP3_MV_VLC_BITS     6
 | |
| #define VP4_MV_VLC_BITS     6
 | |
| #define SUPERBLOCK_VLC_BITS 6
 | |
| 
 | |
| #define FRAGMENT_PIXELS 8
 | |
| 
 | |
| // FIXME split things out into their own arrays
 | |
| typedef struct Vp3Fragment {
 | |
|     int16_t dc;
 | |
|     uint8_t coding_method;
 | |
|     uint8_t qpi;
 | |
| } Vp3Fragment;
 | |
| 
 | |
| #define SB_NOT_CODED        0
 | |
| #define SB_PARTIALLY_CODED  1
 | |
| #define SB_FULLY_CODED      2
 | |
| 
 | |
| // This is the maximum length of a single long bit run that can be encoded
 | |
| // for superblock coding or block qps. Theora special-cases this to read a
 | |
| // bit instead of flipping the current bit to allow for runs longer than 4129.
 | |
| #define MAXIMUM_LONG_BIT_RUN 4129
 | |
| 
 | |
| #define MODE_INTER_NO_MV      0
 | |
| #define MODE_INTRA            1
 | |
| #define MODE_INTER_PLUS_MV    2
 | |
| #define MODE_INTER_LAST_MV    3
 | |
| #define MODE_INTER_PRIOR_LAST 4
 | |
| #define MODE_USING_GOLDEN     5
 | |
| #define MODE_GOLDEN_MV        6
 | |
| #define MODE_INTER_FOURMV     7
 | |
| #define CODING_MODE_COUNT     8
 | |
| 
 | |
| /* special internal mode */
 | |
| #define MODE_COPY             8
 | |
| 
 | |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
 | |
| 
 | |
| 
 | |
| /* There are 6 preset schemes, plus a free-form scheme */
 | |
| static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
 | |
|     /* scheme 1: Last motion vector dominates */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 2 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 3 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|       MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 4 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|       MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 5: No motion vector dominates */
 | |
|     { MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
 | |
|       MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 6 */
 | |
|     { MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
 | |
|       MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_PLUS_MV,    MODE_INTRA,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| };
 | |
| 
 | |
| static const uint8_t hilbert_offset[16][2] = {
 | |
|     { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
 | |
|     { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
 | |
|     { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
 | |
|     { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     VP4_DC_INTRA  = 0,
 | |
|     VP4_DC_INTER  = 1,
 | |
|     VP4_DC_GOLDEN = 2,
 | |
|     NB_VP4_DC_TYPES,
 | |
|     VP4_DC_UNDEFINED = NB_VP4_DC_TYPES
 | |
| };
 | |
| 
 | |
| static const uint8_t vp4_pred_block_type_map[8] = {
 | |
|     [MODE_INTER_NO_MV]      = VP4_DC_INTER,
 | |
|     [MODE_INTRA]            = VP4_DC_INTRA,
 | |
|     [MODE_INTER_PLUS_MV]    = VP4_DC_INTER,
 | |
|     [MODE_INTER_LAST_MV]    = VP4_DC_INTER,
 | |
|     [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER,
 | |
|     [MODE_USING_GOLDEN]     = VP4_DC_GOLDEN,
 | |
|     [MODE_GOLDEN_MV]        = VP4_DC_GOLDEN,
 | |
|     [MODE_INTER_FOURMV]     = VP4_DC_INTER,
 | |
| };
 | |
| 
 | |
| static VLCElem superblock_run_length_vlc[88]; /* version <  2 */
 | |
| static VLCElem fragment_run_length_vlc[56];   /* version <  2 */
 | |
| static VLCElem motion_vector_vlc[112];        /* version <  2 */
 | |
| 
 | |
| // The VP4 tables reuse this vlc.
 | |
| static VLCElem mode_code_vlc[24 + 2108 * CONFIG_VP4_DECODER];
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
| static const VLCElem *vp4_mv_vlc_table[2][7]; /* version >= 2 */
 | |
| static const VLCElem *block_pattern_vlc[2];   /* version >= 2 */
 | |
| #endif
 | |
| 
 | |
| typedef struct {
 | |
|     int dc;
 | |
|     int type;
 | |
| } VP4Predictor;
 | |
| 
 | |
| #define MIN_DEQUANT_VAL 2
 | |
| 
 | |
| typedef struct HuffEntry {
 | |
|     uint8_t len, sym;
 | |
| } HuffEntry;
 | |
| 
 | |
| typedef struct HuffTable {
 | |
|     HuffEntry entries[32];
 | |
|     uint8_t   nb_entries;
 | |
| } HuffTable;
 | |
| 
 | |
| typedef struct CoeffVLCs {
 | |
|     const VLCElem *vlc_tabs[80];
 | |
|     VLC vlcs[80];
 | |
| } CoeffVLCs;
 | |
| 
 | |
| typedef struct Vp3DecodeContext {
 | |
|     AVCodecContext *avctx;
 | |
|     int theora, theora_tables, theora_header;
 | |
|     int version;
 | |
|     int width, height;
 | |
|     int chroma_x_shift, chroma_y_shift;
 | |
|     ProgressFrame golden_frame;
 | |
|     ProgressFrame last_frame;
 | |
|     ProgressFrame current_frame;
 | |
|     int keyframe;
 | |
|     uint8_t idct_permutation[64];
 | |
|     uint8_t idct_scantable[64];
 | |
|     HpelDSPContext hdsp;
 | |
|     VideoDSPContext vdsp;
 | |
|     VP3DSPContext vp3dsp;
 | |
|     DECLARE_ALIGNED(16, int16_t, block)[64];
 | |
|     int flipped_image;
 | |
|     int last_slice_end;
 | |
|     int skip_loop_filter;
 | |
| 
 | |
|     int qps[3];
 | |
|     int nqps;
 | |
|     int last_qps[3];
 | |
| 
 | |
|     int superblock_count;
 | |
|     int y_superblock_width;
 | |
|     int y_superblock_height;
 | |
|     int y_superblock_count;
 | |
|     int c_superblock_width;
 | |
|     int c_superblock_height;
 | |
|     int c_superblock_count;
 | |
|     int u_superblock_start;
 | |
|     int v_superblock_start;
 | |
|     unsigned char *superblock_coding;
 | |
| 
 | |
|     int macroblock_count; /* y macroblock count */
 | |
|     int macroblock_width;
 | |
|     int macroblock_height;
 | |
|     int c_macroblock_count;
 | |
|     int c_macroblock_width;
 | |
|     int c_macroblock_height;
 | |
|     int yuv_macroblock_count; /* y+u+v macroblock count */
 | |
| 
 | |
|     int fragment_count;
 | |
|     int fragment_width[2];
 | |
|     int fragment_height[2];
 | |
| 
 | |
|     Vp3Fragment *all_fragments;
 | |
|     int fragment_start[3];
 | |
|     int data_offset[3];
 | |
|     uint8_t offset_x;
 | |
|     uint8_t offset_y;
 | |
|     int offset_x_warned;
 | |
| 
 | |
|     int8_t (*motion_val[2])[2];
 | |
| 
 | |
|     /* tables */
 | |
|     uint16_t coded_dc_scale_factor[2][64];
 | |
|     uint32_t coded_ac_scale_factor[64];
 | |
|     uint8_t base_matrix[384][64];
 | |
|     uint8_t qr_count[2][3];
 | |
|     uint8_t qr_size[2][3][64];
 | |
|     uint16_t qr_base[2][3][64];
 | |
| 
 | |
|     /**
 | |
|      * This is a list of all tokens in bitstream order. Reordering takes place
 | |
|      * by pulling from each level during IDCT. As a consequence, IDCT must be
 | |
|      * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
 | |
|      * otherwise. The 32 different tokens with up to 12 bits of extradata are
 | |
|      * collapsed into 3 types, packed as follows:
 | |
|      *   (from the low to high bits)
 | |
|      *
 | |
|      * 2 bits: type (0,1,2)
 | |
|      *   0: EOB run, 14 bits for run length (12 needed)
 | |
|      *   1: zero run, 7 bits for run length
 | |
|      *                7 bits for the next coefficient (3 needed)
 | |
|      *   2: coefficient, 14 bits (11 needed)
 | |
|      *
 | |
|      * Coefficients are signed, so are packed in the highest bits for automatic
 | |
|      * sign extension.
 | |
|      */
 | |
|     int16_t *dct_tokens[3][64];
 | |
|     int16_t *dct_tokens_base;
 | |
| #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
 | |
| #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
 | |
| #define TOKEN_COEFF(coeff)              (((coeff) * 4) + 2)
 | |
| 
 | |
|     /**
 | |
|      * number of blocks that contain DCT coefficients at
 | |
|      * the given level or higher
 | |
|      */
 | |
|     int num_coded_frags[3][64];
 | |
|     int total_num_coded_frags;
 | |
| 
 | |
|     /* this is a list of indexes into the all_fragments array indicating
 | |
|      * which of the fragments are coded */
 | |
|     int *coded_fragment_list[3];
 | |
| 
 | |
|     int *kf_coded_fragment_list;
 | |
|     int *nkf_coded_fragment_list;
 | |
|     int num_kf_coded_fragment[3];
 | |
| 
 | |
|     /**
 | |
|      * The first 16 of the following VLCs are for the dc coefficients;
 | |
|      * the others are four groups of 16 VLCs each for ac coefficients.
 | |
|      * This is a RefStruct reference to share these VLCs between threads.
 | |
|      */
 | |
|     CoeffVLCs *coeff_vlc;
 | |
| 
 | |
|     /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | |
|      * index into them */
 | |
|     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
 | |
| 
 | |
|     /* This table contains superblock_count * 16 entries. Each set of 16
 | |
|      * numbers corresponds to the fragment indexes 0..15 of the superblock.
 | |
|      * An entry will be -1 to indicate that no entry corresponds to that
 | |
|      * index. */
 | |
|     int *superblock_fragments;
 | |
| 
 | |
|     /* This is an array that indicates how a particular macroblock
 | |
|      * is coded. */
 | |
|     unsigned char *macroblock_coding;
 | |
| 
 | |
|     uint8_t *edge_emu_buffer;
 | |
| 
 | |
|     /* Huffman decode */
 | |
|     HuffTable huffman_table[5 * 16];
 | |
| 
 | |
|     uint8_t filter_limit_values[64];
 | |
|     DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
 | |
| 
 | |
|     VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
 | |
| } Vp3DecodeContext;
 | |
| 
 | |
| /************************************************************************
 | |
|  * VP3 specific functions
 | |
|  ************************************************************************/
 | |
| 
 | |
| static av_cold void free_tables(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     av_freep(&s->superblock_coding);
 | |
|     av_freep(&s->all_fragments);
 | |
|     av_freep(&s->nkf_coded_fragment_list);
 | |
|     av_freep(&s->kf_coded_fragment_list);
 | |
|     av_freep(&s->dct_tokens_base);
 | |
|     av_freep(&s->superblock_fragments);
 | |
|     av_freep(&s->macroblock_coding);
 | |
|     av_freep(&s->dc_pred_row);
 | |
|     av_freep(&s->motion_val[0]);
 | |
|     av_freep(&s->motion_val[1]);
 | |
| }
 | |
| 
 | |
| static void vp3_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     ff_progress_frame_unref(&s->golden_frame);
 | |
|     ff_progress_frame_unref(&s->last_frame);
 | |
|     ff_progress_frame_unref(&s->current_frame);
 | |
| }
 | |
| 
 | |
| static av_cold int vp3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     free_tables(avctx);
 | |
|     av_freep(&s->edge_emu_buffer);
 | |
| 
 | |
|     s->theora_tables = 0;
 | |
| 
 | |
|     /* release all frames */
 | |
|     vp3_decode_flush(avctx);
 | |
| 
 | |
|     ff_refstruct_unref(&s->coeff_vlc);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This function sets up all of the various blocks mappings:
 | |
|  * superblocks <-> fragments, macroblocks <-> fragments,
 | |
|  * superblocks <-> macroblocks
 | |
|  *
 | |
|  * @return 0 is successful; returns 1 if *anything* went wrong.
 | |
|  */
 | |
| static int init_block_mapping(Vp3DecodeContext *s)
 | |
| {
 | |
|     int j = 0;
 | |
| 
 | |
|     for (int plane = 0; plane < 3; plane++) {
 | |
|         int sb_width    = plane ? s->c_superblock_width
 | |
|                                 : s->y_superblock_width;
 | |
|         int sb_height   = plane ? s->c_superblock_height
 | |
|                                 : s->y_superblock_height;
 | |
|         int frag_width  = s->fragment_width[!!plane];
 | |
|         int frag_height = s->fragment_height[!!plane];
 | |
| 
 | |
|         for (int sb_y = 0; sb_y < sb_height; sb_y++)
 | |
|             for (int sb_x = 0; sb_x < sb_width; sb_x++)
 | |
|                 for (int i = 0; i < 16; i++) {
 | |
|                     int x = 4 * sb_x + hilbert_offset[i][0];
 | |
|                     int y = 4 * sb_y + hilbert_offset[i][1];
 | |
| 
 | |
|                     if (x < frag_width && y < frag_height)
 | |
|                         s->superblock_fragments[j++] = s->fragment_start[plane] +
 | |
|                                                        y * frag_width + x;
 | |
|                     else
 | |
|                         s->superblock_fragments[j++] = -1;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     return 0;  /* successful path out */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets up the dequantization tables used for a particular
 | |
|  * frame.
 | |
|  */
 | |
| static void init_dequantizer(Vp3DecodeContext *s, int qpi)
 | |
| {
 | |
|     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
 | |
| 
 | |
|     for (int inter = 0; inter < 2; inter++) {
 | |
|         for (int plane = 0; plane < 3; plane++) {
 | |
|             int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
 | |
|             int sum = 0, bmi, bmj, qistart, qri;
 | |
|             for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
 | |
|                 sum += s->qr_size[inter][plane][qri];
 | |
|                 if (s->qps[qpi] <= sum)
 | |
|                     break;
 | |
|             }
 | |
|             qistart = sum - s->qr_size[inter][plane][qri];
 | |
|             bmi     = s->qr_base[inter][plane][qri];
 | |
|             bmj     = s->qr_base[inter][plane][qri + 1];
 | |
|             for (int i = 0; i < 64; i++) {
 | |
|                 int coeff = (2 * (sum     - s->qps[qpi]) * s->base_matrix[bmi][i] -
 | |
|                              2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
 | |
|                              s->qr_size[inter][plane][qri]) /
 | |
|                             (2 * s->qr_size[inter][plane][qri]);
 | |
| 
 | |
|                 int qmin   = 8 << (inter + !i);
 | |
|                 int qscale = i ? ac_scale_factor : dc_scale_factor;
 | |
|                 int qbias = (1 + inter) * 3;
 | |
|                 s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
 | |
|                     (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
 | |
|                                                : (qscale * (coeff - qbias) / 100 + qbias) * 4;
 | |
|             }
 | |
|             /* all DC coefficients use the same quant so as not to interfere
 | |
|              * with DC prediction */
 | |
|             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function initializes the loop filter boundary limits if the frame's
 | |
|  * quality index is different from the previous frame's.
 | |
|  *
 | |
|  * The filter_limit_values may not be larger than 127.
 | |
|  */
 | |
| static void init_loop_filter(Vp3DecodeContext *s)
 | |
| {
 | |
|     ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all of the superblock/macroblock/fragment coding
 | |
|  * information from the bitstream.
 | |
|  */
 | |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     const int superblock_starts[3] = {
 | |
|         0, s->u_superblock_start, s->v_superblock_start
 | |
|     };
 | |
|     int bit = 0;
 | |
|     int current_superblock = 0;
 | |
|     int current_run = 0;
 | |
|     int num_partial_superblocks = 0;
 | |
| 
 | |
|     int current_fragment;
 | |
|     int plane0_num_coded_frags = 0;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | |
|     } else {
 | |
|         /* unpack the list of partially-coded superblocks */
 | |
|         bit         = get_bits1(gb) ^ 1;
 | |
|         current_run = 0;
 | |
| 
 | |
|         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
 | |
|             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|             current_run = get_vlc2(gb, superblock_run_length_vlc,
 | |
|                                    SUPERBLOCK_VLC_BITS, 2);
 | |
|             if (current_run == 34)
 | |
|                 current_run += get_bits(gb, 12);
 | |
| 
 | |
|             if (current_run > s->superblock_count - current_superblock) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid partially coded superblock run length\n");
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             memset(s->superblock_coding + current_superblock, bit, current_run);
 | |
| 
 | |
|             current_superblock += current_run;
 | |
|             if (bit)
 | |
|                 num_partial_superblocks += current_run;
 | |
|         }
 | |
| 
 | |
|         /* unpack the list of fully coded superblocks if any of the blocks were
 | |
|          * not marked as partially coded in the previous step */
 | |
|         if (num_partial_superblocks < s->superblock_count) {
 | |
|             int superblocks_decoded = 0;
 | |
| 
 | |
|             current_superblock = 0;
 | |
|             bit                = get_bits1(gb) ^ 1;
 | |
|             current_run        = 0;
 | |
| 
 | |
|             while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
 | |
|                    get_bits_left(gb) > 0) {
 | |
|                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                     bit = get_bits1(gb);
 | |
|                 else
 | |
|                     bit ^= 1;
 | |
| 
 | |
|                 current_run = get_vlc2(gb, superblock_run_length_vlc,
 | |
|                                        SUPERBLOCK_VLC_BITS, 2);
 | |
|                 if (current_run == 34)
 | |
|                     current_run += get_bits(gb, 12);
 | |
| 
 | |
|                 for (int j = 0; j < current_run; current_superblock++) {
 | |
|                     if (current_superblock >= s->superblock_count) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                "Invalid fully coded superblock run length\n");
 | |
|                         return -1;
 | |
|                     }
 | |
| 
 | |
|                     /* skip any superblocks already marked as partially coded */
 | |
|                     if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | |
|                         s->superblock_coding[current_superblock] = 2 * bit;
 | |
|                         j++;
 | |
|                     }
 | |
|                 }
 | |
|                 superblocks_decoded += current_run;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* if there were partial blocks, initialize bitstream for
 | |
|          * unpacking fragment codings */
 | |
|         if (num_partial_superblocks) {
 | |
|             current_run = 0;
 | |
|             bit         = get_bits1(gb);
 | |
|             /* toggle the bit because as soon as the first run length is
 | |
|              * fetched the bit will be toggled again */
 | |
|             bit ^= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* figure out which fragments are coded; iterate through each
 | |
|      * superblock (all planes) */
 | |
|     s->total_num_coded_frags = 0;
 | |
|     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | |
| 
 | |
|     s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list
 | |
|                                             : s->nkf_coded_fragment_list;
 | |
| 
 | |
|     for (int plane = 0; plane < 3; plane++) {
 | |
|         int sb_start = superblock_starts[plane];
 | |
|         int sb_end   = sb_start + (plane ? s->c_superblock_count
 | |
|                                          : s->y_superblock_count);
 | |
|         int num_coded_frags = 0;
 | |
| 
 | |
|         if (s->keyframe) {
 | |
|             if (s->num_kf_coded_fragment[plane] == -1) {
 | |
|                 for (int i = sb_start; i < sb_end; i++) {
 | |
|                     /* iterate through all 16 fragments in a superblock */
 | |
|                     for (int j = 0; j < 16; j++) {
 | |
|                         /* if the fragment is in bounds, check its coding status */
 | |
|                         current_fragment = s->superblock_fragments[i * 16 + j];
 | |
|                         if (current_fragment != -1) {
 | |
|                             s->coded_fragment_list[plane][num_coded_frags++] =
 | |
|                                 current_fragment;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 s->num_kf_coded_fragment[plane] = num_coded_frags;
 | |
|             } else
 | |
|                 num_coded_frags = s->num_kf_coded_fragment[plane];
 | |
|         } else {
 | |
|             for (int i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
 | |
|                 if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 /* iterate through all 16 fragments in a superblock */
 | |
|                 for (int j = 0; j < 16; j++) {
 | |
|                     /* if the fragment is in bounds, check its coding status */
 | |
|                     current_fragment = s->superblock_fragments[i * 16 + j];
 | |
|                     if (current_fragment != -1) {
 | |
|                         int coded = s->superblock_coding[i];
 | |
| 
 | |
|                         if (coded == SB_PARTIALLY_CODED) {
 | |
|                             /* fragment may or may not be coded; this is the case
 | |
|                              * that cares about the fragment coding runs */
 | |
|                             if (current_run-- == 0) {
 | |
|                                 bit        ^= 1;
 | |
|                                 current_run = get_vlc2(gb, fragment_run_length_vlc, 5, 2);
 | |
|                             }
 | |
|                             coded = bit;
 | |
|                         }
 | |
| 
 | |
|                         if (coded) {
 | |
|                             /* default mode; actual mode will be decoded in
 | |
|                              * the next phase */
 | |
|                             s->all_fragments[current_fragment].coding_method =
 | |
|                                 MODE_INTER_NO_MV;
 | |
|                             s->coded_fragment_list[plane][num_coded_frags++] =
 | |
|                                 current_fragment;
 | |
|                         } else {
 | |
|                             /* not coded; copy this fragment from the prior frame */
 | |
|                             s->all_fragments[current_fragment].coding_method =
 | |
|                                 MODE_COPY;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (!plane)
 | |
|             plane0_num_coded_frags = num_coded_frags;
 | |
|         s->total_num_coded_frags += num_coded_frags;
 | |
|         for (int i = 0; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] = num_coded_frags;
 | |
|         if (plane < 2)
 | |
|             s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
 | |
|                                                 num_coded_frags;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define BLOCK_X (2 * mb_x + (k & 1))
 | |
| #define BLOCK_Y (2 * mb_y + (k >> 1))
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
| /**
 | |
|  * @return number of blocks, or > yuv_macroblock_count on error.
 | |
|  *         return value is always >= 1.
 | |
|  */
 | |
| static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int v = 1;
 | |
|     int bits;
 | |
|     while ((bits = show_bits(gb, 9)) == 0x1ff) {
 | |
|         skip_bits(gb, 9);
 | |
|         v += 256;
 | |
|         if (v > s->yuv_macroblock_count) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
 | |
|             return v;
 | |
|         }
 | |
|     }
 | |
| #define body(n) { \
 | |
|     skip_bits(gb, 2 + n); \
 | |
|     v += (1 << n) + get_bits(gb, n); }
 | |
| #define thresh(n) (0x200 - (0x80 >> n))
 | |
| #define else_if(n) else if (bits < thresh(n)) body(n)
 | |
|     if (bits < 0x100) {
 | |
|         skip_bits(gb, 1);
 | |
|     } else if (bits < thresh(0)) {
 | |
|         skip_bits(gb, 2);
 | |
|         v += 1;
 | |
|     }
 | |
|     else_if(1)
 | |
|     else_if(2)
 | |
|     else_if(3)
 | |
|     else_if(4)
 | |
|     else_if(5)
 | |
|     else_if(6)
 | |
|     else body(7)
 | |
| #undef body
 | |
| #undef thresh
 | |
| #undef else_if
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static int vp4_get_block_pattern(GetBitContext *gb, int *next_block_pattern_table)
 | |
| {
 | |
|     int v = get_vlc2(gb, block_pattern_vlc[*next_block_pattern_table], 5, 1);
 | |
|     *next_block_pattern_table = vp4_block_pattern_table_selector[v];
 | |
|     return v + 1;
 | |
| }
 | |
| 
 | |
| static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int fragment;
 | |
|     int next_block_pattern_table;
 | |
|     int bit, current_run, has_partial;
 | |
| 
 | |
|     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | |
| 
 | |
|     if (s->keyframe)
 | |
|         return 0;
 | |
| 
 | |
|     has_partial = 0;
 | |
|     bit         = get_bits1(gb);
 | |
|     for (int i = 0; i < s->yuv_macroblock_count; i += current_run) {
 | |
|         if (get_bits_left(gb) <= 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         current_run = vp4_get_mb_count(s, gb);
 | |
|         if (current_run > s->yuv_macroblock_count - i)
 | |
|             return -1;
 | |
|         memset(s->superblock_coding + i, 2 * bit, current_run);
 | |
|         bit ^= 1;
 | |
|         has_partial |= bit;
 | |
|     }
 | |
| 
 | |
|     if (has_partial) {
 | |
|         if (get_bits_left(gb) <= 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         bit  = get_bits1(gb);
 | |
|         current_run = vp4_get_mb_count(s, gb);
 | |
|         for (int i = 0; i < s->yuv_macroblock_count; i++) {
 | |
|             if (!s->superblock_coding[i]) {
 | |
|                 if (!current_run) {
 | |
|                     bit ^= 1;
 | |
|                     current_run = vp4_get_mb_count(s, gb);
 | |
|                 }
 | |
|                 s->superblock_coding[i] = bit;
 | |
|                 current_run--;
 | |
|             }
 | |
|         }
 | |
|         if (current_run) /* handle situation when vp4_get_mb_count() fails */
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     next_block_pattern_table = 0;
 | |
|     for (int plane = 0, i = 0; plane < 3; plane++) {
 | |
|         int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
 | |
|         int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
 | |
|         int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
 | |
|         int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
 | |
|         int fragment_width = s->fragment_width[!!plane];
 | |
|         int fragment_height = s->fragment_height[!!plane];
 | |
| 
 | |
|         for (int sb_y = 0; sb_y < sb_height; sb_y++) {
 | |
|             for (int sb_x = 0; sb_x < sb_width; sb_x++) {
 | |
|                 for (int j = 0; j < 4; j++) {
 | |
|                     int mb_x = 2 * sb_x + (j >> 1);
 | |
|                     int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
 | |
|                     int mb_coded, pattern, coded;
 | |
| 
 | |
|                     if (mb_x >= mb_width || mb_y >= mb_height)
 | |
|                         continue;
 | |
| 
 | |
|                     mb_coded = s->superblock_coding[i++];
 | |
| 
 | |
|                     if (mb_coded == SB_FULLY_CODED)
 | |
|                         pattern = 0xF;
 | |
|                     else if (mb_coded == SB_PARTIALLY_CODED)
 | |
|                         pattern = vp4_get_block_pattern(gb, &next_block_pattern_table);
 | |
|                     else
 | |
|                         pattern = 0;
 | |
| 
 | |
|                     for (int k = 0; k < 4; k++) {
 | |
|                         if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
 | |
|                             continue;
 | |
|                         fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
 | |
|                         coded = pattern & (8 >> k);
 | |
|                         /* MODE_INTER_NO_MV is the default for coded fragments.
 | |
|                            the actual method is decoded in the next phase. */
 | |
|                         s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the coding mode data for individual macroblocks
 | |
|  * from the bitstream.
 | |
|  */
 | |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int scheme;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int coding_mode;
 | |
|     int custom_mode_alphabet[CODING_MODE_COUNT];
 | |
|     const int *alphabet;
 | |
|     Vp3Fragment *frag;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         for (int i = 0; i < s->fragment_count; i++)
 | |
|             s->all_fragments[i].coding_method = MODE_INTRA;
 | |
|     } else {
 | |
|         /* fetch the mode coding scheme for this frame */
 | |
|         scheme = get_bits(gb, 3);
 | |
| 
 | |
|         /* is it a custom coding scheme? */
 | |
|         if (scheme == 0) {
 | |
|             for (int i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
 | |
|             for (int i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[get_bits(gb, 3)] = i;
 | |
|             alphabet = custom_mode_alphabet;
 | |
|         } else
 | |
|             alphabet = ModeAlphabet[scheme - 1];
 | |
| 
 | |
|         /* iterate through all of the macroblocks that contain 1 or more
 | |
|          * coded fragments */
 | |
|         for (int sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|             for (int sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|                 if (get_bits_left(gb) <= 0)
 | |
|                     return -1;
 | |
| 
 | |
|                 for (int j = 0; j < 4; j++) {
 | |
|                     int k;
 | |
|                     int mb_x = 2 * sb_x + (j >> 1);
 | |
|                     int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | |
|                     current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|                     if (mb_x >= s->macroblock_width ||
 | |
|                         mb_y >= s->macroblock_height)
 | |
|                         continue;
 | |
| 
 | |
|                     /* coding modes are only stored if the macroblock has
 | |
|                      * at least one luma block coded, otherwise it must be
 | |
|                      * INTER_NO_MV */
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         current_fragment = BLOCK_Y *
 | |
|                                            s->fragment_width[0] + BLOCK_X;
 | |
|                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
 | |
|                             break;
 | |
|                     }
 | |
|                     if (k == 4) {
 | |
|                         s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     /* mode 7 means get 3 bits for each coding mode */
 | |
|                     if (scheme == 7)
 | |
|                         coding_mode = get_bits(gb, 3);
 | |
|                     else
 | |
|                         coding_mode = alphabet[get_vlc2(gb, mode_code_vlc, 4, 2)];
 | |
| 
 | |
|                     s->macroblock_coding[current_macroblock] = coding_mode;
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                         if (frag->coding_method != MODE_COPY)
 | |
|                             frag->coding_method = coding_mode;
 | |
|                     }
 | |
| 
 | |
| #define SET_CHROMA_MODES                                                      \
 | |
|     if (frag[s->fragment_start[1]].coding_method != MODE_COPY)                \
 | |
|         frag[s->fragment_start[1]].coding_method = coding_mode;               \
 | |
|     if (frag[s->fragment_start[2]].coding_method != MODE_COPY)                \
 | |
|         frag[s->fragment_start[2]].coding_method = coding_mode;
 | |
| 
 | |
|                     if (s->chroma_y_shift) {
 | |
|                         frag = s->all_fragments + mb_y *
 | |
|                                s->fragment_width[1] + mb_x;
 | |
|                         SET_CHROMA_MODES
 | |
|                     } else if (s->chroma_x_shift) {
 | |
|                         frag = s->all_fragments +
 | |
|                                2 * mb_y * s->fragment_width[1] + mb_x;
 | |
|                         for (k = 0; k < 2; k++) {
 | |
|                             SET_CHROMA_MODES
 | |
|                             frag += s->fragment_width[1];
 | |
|                         }
 | |
|                     } else {
 | |
|                         for (k = 0; k < 4; k++) {
 | |
|                             frag = s->all_fragments +
 | |
|                                    BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | |
|                             SET_CHROMA_MODES
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vp4_get_mv(GetBitContext *gb, int axis, int last_motion)
 | |
| {
 | |
| #if CONFIG_VP4_DECODER
 | |
|     int v = get_vlc2(gb, vp4_mv_vlc_table[axis][vp4_mv_table_selector[FFABS(last_motion)]],
 | |
|                      VP4_MV_VLC_BITS, 2);
 | |
|     return last_motion < 0 ? -v : v;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the motion vectors for the individual
 | |
|  * macroblocks from the bitstream.
 | |
|  */
 | |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int coding_mode;
 | |
|     int motion_x[4];
 | |
|     int motion_y[4];
 | |
|     int last_motion_x = 0;
 | |
|     int last_motion_y = 0;
 | |
|     int prior_last_motion_x = 0;
 | |
|     int prior_last_motion_y = 0;
 | |
|     int last_gold_motion_x = 0;
 | |
|     int last_gold_motion_y = 0;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int frag;
 | |
| 
 | |
|     if (s->keyframe)
 | |
|         return 0;
 | |
| 
 | |
|     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
 | |
|     coding_mode = s->version < 2 ? get_bits1(gb) : 2;
 | |
| 
 | |
|     /* iterate through all of the macroblocks that contain 1 or more
 | |
|      * coded fragments */
 | |
|     for (int sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|         for (int sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|             if (get_bits_left(gb) <= 0)
 | |
|                 return -1;
 | |
| 
 | |
|             for (int j = 0; j < 4; j++) {
 | |
|                 int mb_x = 2 * sb_x + (j >> 1);
 | |
|                 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | |
|                 current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|                 if (mb_x >= s->macroblock_width  ||
 | |
|                     mb_y >= s->macroblock_height ||
 | |
|                     s->macroblock_coding[current_macroblock] == MODE_COPY)
 | |
|                     continue;
 | |
| 
 | |
|                 switch (s->macroblock_coding[current_macroblock]) {
 | |
|                 case MODE_GOLDEN_MV:
 | |
|                     if (coding_mode == 2) { /* VP4 */
 | |
|                         last_gold_motion_x = motion_x[0] = vp4_get_mv(gb, 0, last_gold_motion_x);
 | |
|                         last_gold_motion_y = motion_y[0] = vp4_get_mv(gb, 1, last_gold_motion_y);
 | |
|                         break;
 | |
|                     } /* otherwise fall through */
 | |
|                 case MODE_INTER_PLUS_MV:
 | |
|                     /* all 6 fragments use the same motion vector */
 | |
|                     if (coding_mode == 0) {
 | |
|                         motion_x[0] = get_vlc2(gb, motion_vector_vlc,
 | |
|                                                VP3_MV_VLC_BITS, 2);
 | |
|                         motion_y[0] = get_vlc2(gb, motion_vector_vlc,
 | |
|                                                VP3_MV_VLC_BITS, 2);
 | |
|                     } else if (coding_mode == 1) {
 | |
|                         motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                         motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                     } else { /* VP4 */
 | |
|                         motion_x[0] = vp4_get_mv(gb, 0, last_motion_x);
 | |
|                         motion_y[0] = vp4_get_mv(gb, 1, last_motion_y);
 | |
|                     }
 | |
| 
 | |
|                     /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
 | |
|                         prior_last_motion_x = last_motion_x;
 | |
|                         prior_last_motion_y = last_motion_y;
 | |
|                         last_motion_x       = motion_x[0];
 | |
|                         last_motion_y       = motion_y[0];
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_FOURMV:
 | |
|                     /* vector maintenance */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
| 
 | |
|                     /* fetch 4 vectors from the bitstream, one for each
 | |
|                      * Y fragment, then average for the C fragment vectors */
 | |
|                     for (int k = 0; k < 4; k++) {
 | |
|                         current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
 | |
|                             if (coding_mode == 0) {
 | |
|                                 motion_x[k] = get_vlc2(gb, motion_vector_vlc,
 | |
|                                                        VP3_MV_VLC_BITS, 2);
 | |
|                                 motion_y[k] = get_vlc2(gb, motion_vector_vlc,
 | |
|                                                        VP3_MV_VLC_BITS, 2);
 | |
|                             } else if (coding_mode == 1) {
 | |
|                                 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                                 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                             } else { /* VP4 */
 | |
|                                 motion_x[k] = vp4_get_mv(gb, 0, prior_last_motion_x);
 | |
|                                 motion_y[k] = vp4_get_mv(gb, 1, prior_last_motion_y);
 | |
|                             }
 | |
|                             last_motion_x = motion_x[k];
 | |
|                             last_motion_y = motion_y[k];
 | |
|                         } else {
 | |
|                             motion_x[k] = 0;
 | |
|                             motion_y[k] = 0;
 | |
|                         }
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_LAST_MV:
 | |
|                     /* all 6 fragments use the last motion vector */
 | |
|                     motion_x[0] = last_motion_x;
 | |
|                     motion_y[0] = last_motion_y;
 | |
| 
 | |
|                     /* no vector maintenance (last vector remains the
 | |
|                      * last vector) */
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_PRIOR_LAST:
 | |
|                     /* all 6 fragments use the motion vector prior to the
 | |
|                      * last motion vector */
 | |
|                     motion_x[0] = prior_last_motion_x;
 | |
|                     motion_y[0] = prior_last_motion_y;
 | |
| 
 | |
|                     /* vector maintenance */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
|                     last_motion_x       = motion_x[0];
 | |
|                     last_motion_y       = motion_y[0];
 | |
|                     break;
 | |
| 
 | |
|                 default:
 | |
|                     /* covers intra, inter without MV, golden without MV */
 | |
|                     motion_x[0] = 0;
 | |
|                     motion_y[0] = 0;
 | |
| 
 | |
|                     /* no vector maintenance */
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 /* assign the motion vectors to the correct fragments */
 | |
|                 for (int k = 0; k < 4; k++) {
 | |
|                     current_fragment =
 | |
|                         BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         s->motion_val[0][current_fragment][0] = motion_x[k];
 | |
|                         s->motion_val[0][current_fragment][1] = motion_y[k];
 | |
|                     } else {
 | |
|                         s->motion_val[0][current_fragment][0] = motion_x[0];
 | |
|                         s->motion_val[0][current_fragment][1] = motion_y[0];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (s->chroma_y_shift) {
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
 | |
|                                              motion_x[2] + motion_x[3], 2);
 | |
|                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
 | |
|                                              motion_y[2] + motion_y[3], 2);
 | |
|                     }
 | |
|                     if (s->version <= 2) {
 | |
|                         motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | |
|                         motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
 | |
|                     }
 | |
|                     frag = mb_y * s->fragment_width[1] + mb_x;
 | |
|                     s->motion_val[1][frag][0] = motion_x[0];
 | |
|                     s->motion_val[1][frag][1] = motion_y[0];
 | |
|                 } else if (s->chroma_x_shift) {
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
 | |
|                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
 | |
|                         motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
 | |
|                         motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
 | |
|                     } else {
 | |
|                         motion_x[1] = motion_x[0];
 | |
|                         motion_y[1] = motion_y[0];
 | |
|                     }
 | |
|                     if (s->version <= 2) {
 | |
|                         motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | |
|                         motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
 | |
|                     }
 | |
|                     frag = 2 * mb_y * s->fragment_width[1] + mb_x;
 | |
|                     for (int k = 0; k < 2; k++) {
 | |
|                         s->motion_val[1][frag][0] = motion_x[k];
 | |
|                         s->motion_val[1][frag][1] = motion_y[k];
 | |
|                         frag += s->fragment_width[1];
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (int k = 0; k < 4; k++) {
 | |
|                         frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | |
|                         if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                             s->motion_val[1][frag][0] = motion_x[k];
 | |
|                             s->motion_val[1][frag][1] = motion_y[k];
 | |
|                         } else {
 | |
|                             s->motion_val[1][frag][0] = motion_x[0];
 | |
|                             s->motion_val[1][frag][1] = motion_y[0];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int num_blocks = s->total_num_coded_frags;
 | |
| 
 | |
|     for (int qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
 | |
|         int i = 0, blocks_decoded = 0, num_blocks_at_qpi = 0;
 | |
|         int bit, run_length;
 | |
| 
 | |
|         bit        = get_bits1(gb) ^ 1;
 | |
|         run_length = 0;
 | |
| 
 | |
|         do {
 | |
|             if (run_length == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|             run_length = get_vlc2(gb, superblock_run_length_vlc,
 | |
|                                   SUPERBLOCK_VLC_BITS, 2);
 | |
|             if (run_length == 34)
 | |
|                 run_length += get_bits(gb, 12);
 | |
|             blocks_decoded += run_length;
 | |
| 
 | |
|             if (!bit)
 | |
|                 num_blocks_at_qpi += run_length;
 | |
| 
 | |
|             for (int j = 0; j < run_length; i++) {
 | |
|                 if (i >= s->total_num_coded_frags)
 | |
|                     return -1;
 | |
| 
 | |
|                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
 | |
|                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
 | |
|                     j++;
 | |
|                 }
 | |
|             }
 | |
|         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
 | |
| 
 | |
|         num_blocks -= num_blocks_at_qpi;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int get_eob_run(GetBitContext *gb, int token)
 | |
| {
 | |
|     int v = eob_run_table[token].base;
 | |
|     if (eob_run_table[token].bits)
 | |
|         v += get_bits(gb, eob_run_table[token].bits);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
 | |
| {
 | |
|     int bits_to_get, zero_run;
 | |
| 
 | |
|     bits_to_get = coeff_get_bits[token];
 | |
|     if (bits_to_get)
 | |
|         bits_to_get = get_bits(gb, bits_to_get);
 | |
|     *coeff = coeff_tables[token][bits_to_get];
 | |
| 
 | |
|     zero_run = zero_run_base[token];
 | |
|     if (zero_run_get_bits[token])
 | |
|         zero_run += get_bits(gb, zero_run_get_bits[token]);
 | |
| 
 | |
|     return zero_run;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | |
|  * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | |
|  * data. This function unpacks all the VLCs for either the Y plane or both
 | |
|  * C planes, and is called for DC coefficients or different AC coefficient
 | |
|  * levels (since different coefficient types require different VLC tables.
 | |
|  *
 | |
|  * This function returns a residual eob run. E.g, if a particular token gave
 | |
|  * instructions to EOB the next 5 fragments and there were only 2 fragments
 | |
|  * left in the current fragment range, 3 would be returned so that it could
 | |
|  * be passed into the next call to this same function.
 | |
|  */
 | |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | |
|                        const VLCElem *vlc_table, int coeff_index,
 | |
|                        int plane,
 | |
|                        int eob_run)
 | |
| {
 | |
|     int j = 0;
 | |
|     int token;
 | |
|     int zero_run  = 0;
 | |
|     int16_t coeff = 0;
 | |
|     int blocks_ended;
 | |
|     int coeff_i = 0;
 | |
|     int num_coeffs      = s->num_coded_frags[plane][coeff_index];
 | |
|     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
 | |
| 
 | |
|     /* local references to structure members to avoid repeated dereferences */
 | |
|     const int *coded_fragment_list = s->coded_fragment_list[plane];
 | |
|     Vp3Fragment *all_fragments = s->all_fragments;
 | |
| 
 | |
|     if (num_coeffs < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                "Invalid number of coefficients at level %d\n", coeff_index);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (eob_run > num_coeffs) {
 | |
|         coeff_i      =
 | |
|         blocks_ended = num_coeffs;
 | |
|         eob_run     -= num_coeffs;
 | |
|     } else {
 | |
|         coeff_i      =
 | |
|         blocks_ended = eob_run;
 | |
|         eob_run      = 0;
 | |
|     }
 | |
| 
 | |
|     // insert fake EOB token to cover the split between planes or zzi
 | |
|     if (blocks_ended)
 | |
|         dct_tokens[j++] = blocks_ended << 2;
 | |
| 
 | |
|     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
 | |
|         /* decode a VLC into a token */
 | |
|         token = get_vlc2(gb, vlc_table, 11, 3);
 | |
|         /* use the token to get a zero run, a coefficient, and an eob run */
 | |
|         if ((unsigned) token <= 6U) {
 | |
|             eob_run = get_eob_run(gb, token);
 | |
|             if (!eob_run)
 | |
|                 eob_run = INT_MAX;
 | |
| 
 | |
|             // record only the number of blocks ended in this plane,
 | |
|             // any spill will be recorded in the next plane.
 | |
|             if (eob_run > num_coeffs - coeff_i) {
 | |
|                 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
 | |
|                 blocks_ended   += num_coeffs - coeff_i;
 | |
|                 eob_run        -= num_coeffs - coeff_i;
 | |
|                 coeff_i         = num_coeffs;
 | |
|             } else {
 | |
|                 dct_tokens[j++] = TOKEN_EOB(eob_run);
 | |
|                 blocks_ended   += eob_run;
 | |
|                 coeff_i        += eob_run;
 | |
|                 eob_run         = 0;
 | |
|             }
 | |
|         } else if (token >= 0) {
 | |
|             zero_run = get_coeff(gb, token, &coeff);
 | |
| 
 | |
|             if (zero_run) {
 | |
|                 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
 | |
|             } else {
 | |
|                 // Save DC into the fragment structure. DC prediction is
 | |
|                 // done in raster order, so the actual DC can't be in with
 | |
|                 // other tokens. We still need the token in dct_tokens[]
 | |
|                 // however, or else the structure collapses on itself.
 | |
|                 if (!coeff_index)
 | |
|                     all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
 | |
| 
 | |
|                 dct_tokens[j++] = TOKEN_COEFF(coeff);
 | |
|             }
 | |
| 
 | |
|             if (coeff_index + zero_run > 64) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Invalid zero run of %d with %d coeffs left\n",
 | |
|                        zero_run, 64 - coeff_index);
 | |
|                 zero_run = 64 - coeff_index;
 | |
|             }
 | |
| 
 | |
|             // zero runs code multiple coefficients,
 | |
|             // so don't try to decode coeffs for those higher levels
 | |
|             for (int i = coeff_index + 1; i <= coeff_index + zero_run; i++)
 | |
|                 s->num_coded_frags[plane][i]--;
 | |
|             coeff_i++;
 | |
|         } else {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
 | |
| 
 | |
|     // decrement the number of blocks that have higher coefficients for each
 | |
|     // EOB run at this level
 | |
|     if (blocks_ended)
 | |
|         for (int i = coeff_index + 1; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] -= blocks_ended;
 | |
| 
 | |
|     // setup the next buffer
 | |
|     if (plane < 2)
 | |
|         s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
 | |
|     else if (coeff_index < 63)
 | |
|         s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
 | |
| 
 | |
|     return eob_run;
 | |
| }
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height);
 | |
| /*
 | |
|  * This function unpacks all of the DCT coefficient data from the
 | |
|  * bitstream.
 | |
|  */
 | |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     const VLCElem *const *coeff_vlc = s->coeff_vlc->vlc_tabs;
 | |
|     int dc_y_table;
 | |
|     int dc_c_table;
 | |
|     int ac_y_table;
 | |
|     int ac_c_table;
 | |
|     int residual_eob_run = 0;
 | |
|     const VLCElem *y_tables[64], *c_tables[64];
 | |
| 
 | |
|     s->dct_tokens[0][0] = s->dct_tokens_base;
 | |
| 
 | |
|     if (get_bits_left(gb) < 16)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     /* fetch the DC table indexes */
 | |
|     dc_y_table = get_bits(gb, 4);
 | |
|     dc_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* unpack the Y plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_y_table], 0,
 | |
|                                    0, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
|     if (get_bits_left(gb) < 8)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     /* reverse prediction of the Y-plane DC coefficients */
 | |
|     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
 | |
| 
 | |
|     /* unpack the C plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_c_table], 0,
 | |
|                                    1, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
|     residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_c_table], 0,
 | |
|                                    2, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
| 
 | |
|     /* reverse prediction of the C-plane DC coefficients */
 | |
|     if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
 | |
|         reverse_dc_prediction(s, s->fragment_start[1],
 | |
|                               s->fragment_width[1], s->fragment_height[1]);
 | |
|         reverse_dc_prediction(s, s->fragment_start[2],
 | |
|                               s->fragment_width[1], s->fragment_height[1]);
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(gb) < 8)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     /* fetch the AC table indexes */
 | |
|     ac_y_table = get_bits(gb, 4);
 | |
|     ac_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* build tables of AC VLC tables */
 | |
|     for (int i = 1; i <= 5; i++) {
 | |
|         /* AC VLC table group 1 */
 | |
|         y_tables[i] = coeff_vlc[ac_y_table + 16];
 | |
|         c_tables[i] = coeff_vlc[ac_c_table + 16];
 | |
|     }
 | |
|     for (int i = 6; i <= 14; i++) {
 | |
|         /* AC VLC table group 2 */
 | |
|         y_tables[i] = coeff_vlc[ac_y_table + 32];
 | |
|         c_tables[i] = coeff_vlc[ac_c_table + 32];
 | |
|     }
 | |
|     for (int i = 15; i <= 27; i++) {
 | |
|         /* AC VLC table group 3 */
 | |
|         y_tables[i] = coeff_vlc[ac_y_table + 48];
 | |
|         c_tables[i] = coeff_vlc[ac_c_table + 48];
 | |
|     }
 | |
|     for (int i = 28; i <= 63; i++) {
 | |
|         /* AC VLC table group 4 */
 | |
|         y_tables[i] = coeff_vlc[ac_y_table + 64];
 | |
|         c_tables[i] = coeff_vlc[ac_c_table + 64];
 | |
|     }
 | |
| 
 | |
|     /* decode all AC coefficients */
 | |
|     for (int i = 1; i <= 63; i++) {
 | |
|         residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
 | |
|                                        0, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
| 
 | |
|         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                                        1, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
|         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                                        2, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
| /**
 | |
|  * eob_tracker[] is instead of TOKEN_EOB(value)
 | |
|  * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
 | |
|  *
 | |
|  * @return < 0 on error
 | |
|  */
 | |
| static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | |
|                            const VLCElem *const vlc_tables[64],
 | |
|                        int plane, int eob_tracker[64], int fragment)
 | |
| {
 | |
|     int token;
 | |
|     int zero_run  = 0;
 | |
|     int16_t coeff = 0;
 | |
|     int coeff_i = 0;
 | |
|     int eob_run;
 | |
| 
 | |
|     while (!eob_tracker[coeff_i]) {
 | |
|         if (get_bits_left(gb) < 1)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         token = get_vlc2(gb, vlc_tables[coeff_i], 11, 3);
 | |
| 
 | |
|         /* use the token to get a zero run, a coefficient, and an eob run */
 | |
|         if ((unsigned) token <= 6U) {
 | |
|             eob_run = get_eob_run(gb, token);
 | |
|             *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
 | |
|             eob_tracker[coeff_i] = eob_run - 1;
 | |
|             return 0;
 | |
|         } else if (token >= 0) {
 | |
|             zero_run = get_coeff(gb, token, &coeff);
 | |
| 
 | |
|             if (zero_run) {
 | |
|                 if (coeff_i + zero_run > 64) {
 | |
|                     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                         "Invalid zero run of %d with %d coeffs left\n",
 | |
|                         zero_run, 64 - coeff_i);
 | |
|                     zero_run = 64 - coeff_i;
 | |
|                 }
 | |
|                 *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
 | |
|                 coeff_i += zero_run;
 | |
|             } else {
 | |
|                 if (!coeff_i)
 | |
|                     s->all_fragments[fragment].dc = coeff;
 | |
| 
 | |
|                 *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
 | |
|             }
 | |
|             coeff_i++;
 | |
|             if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
 | |
|                 return 0; /* stop */
 | |
|         } else {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
 | |
|     eob_tracker[coeff_i]--;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void vp4_dc_predictor_reset(VP4Predictor *p)
 | |
| {
 | |
|     p->dc = 0;
 | |
|     p->type = VP4_DC_UNDEFINED;
 | |
| }
 | |
| 
 | |
| static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
 | |
| 
 | |
|     for (int j = 1; j < 5; j++)
 | |
|         for (int i = 0; i < 4; i++)
 | |
|             vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
 | |
| }
 | |
| 
 | |
| static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
 | |
| 
 | |
|     for (int i = 1; i < 5; i++)
 | |
|         dc_pred[i][0] = dc_pred[i][4];
 | |
| }
 | |
| 
 | |
| /* note: dc_pred points to the current block */
 | |
| static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
 | |
| {
 | |
|     int count = 0;
 | |
|     int dc = 0;
 | |
| 
 | |
|     if (dc_pred[-6].type == type) {
 | |
|         dc += dc_pred[-6].dc;
 | |
|         count++;
 | |
|     }
 | |
| 
 | |
|     if (dc_pred[6].type == type) {
 | |
|         dc += dc_pred[6].dc;
 | |
|         count++;
 | |
|     }
 | |
| 
 | |
|     if (count != 2 && dc_pred[-1].type == type) {
 | |
|         dc += dc_pred[-1].dc;
 | |
|         count++;
 | |
|     }
 | |
| 
 | |
|     if (count != 2 && dc_pred[1].type == type) {
 | |
|         dc += dc_pred[1].dc;
 | |
|         count++;
 | |
|     }
 | |
| 
 | |
|     /* using division instead of shift to correctly handle negative values */
 | |
|     return count == 2 ? dc / 2 : last_dc[type];
 | |
| }
 | |
| 
 | |
| static void vp4_set_tokens_base(Vp3DecodeContext *s)
 | |
| {
 | |
|     int16_t *base = s->dct_tokens_base;
 | |
|     for (int plane = 0; plane < 3; plane++) {
 | |
|         for (int i = 0; i < 64; i++) {
 | |
|             s->dct_tokens[plane][i] = base;
 | |
|             base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     const VLCElem *const *coeff_vlc = s->coeff_vlc->vlc_tabs;
 | |
|     int dc_y_table;
 | |
|     int dc_c_table;
 | |
|     int ac_y_table;
 | |
|     int ac_c_table;
 | |
|     const VLCElem *tables[2][64];
 | |
|     int eob_tracker[64];
 | |
|     VP4Predictor dc_pred[6][6];
 | |
|     int last_dc[NB_VP4_DC_TYPES];
 | |
| 
 | |
|     if (get_bits_left(gb) < 16)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     /* fetch the DC table indexes */
 | |
|     dc_y_table = get_bits(gb, 4);
 | |
|     dc_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     ac_y_table = get_bits(gb, 4);
 | |
|     ac_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* build tables of DC/AC VLC tables */
 | |
| 
 | |
|     /* DC table group */
 | |
|     tables[0][0] = coeff_vlc[dc_y_table];
 | |
|     tables[1][0] = coeff_vlc[dc_c_table];
 | |
|     for (int i = 1; i <= 5; i++) {
 | |
|         /* AC VLC table group 1 */
 | |
|         tables[0][i] = coeff_vlc[ac_y_table + 16];
 | |
|         tables[1][i] = coeff_vlc[ac_c_table + 16];
 | |
|     }
 | |
|     for (int i = 6; i <= 14; i++) {
 | |
|         /* AC VLC table group 2 */
 | |
|         tables[0][i] = coeff_vlc[ac_y_table + 32];
 | |
|         tables[1][i] = coeff_vlc[ac_c_table + 32];
 | |
|     }
 | |
|     for (int i = 15; i <= 27; i++) {
 | |
|         /* AC VLC table group 3 */
 | |
|         tables[0][i] = coeff_vlc[ac_y_table + 48];
 | |
|         tables[1][i] = coeff_vlc[ac_c_table + 48];
 | |
|     }
 | |
|     for (int i = 28; i <= 63; i++) {
 | |
|         /* AC VLC table group 4 */
 | |
|         tables[0][i] = coeff_vlc[ac_y_table + 64];
 | |
|         tables[1][i] = coeff_vlc[ac_c_table + 64];
 | |
|     }
 | |
| 
 | |
|     vp4_set_tokens_base(s);
 | |
| 
 | |
|     memset(last_dc, 0, sizeof(last_dc));
 | |
| 
 | |
|     for (int plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
 | |
|         memset(eob_tracker, 0, sizeof(eob_tracker));
 | |
| 
 | |
|         /* initialise dc prediction */
 | |
|         for (int i = 0; i < s->fragment_width[!!plane]; i++)
 | |
|             vp4_dc_predictor_reset(&s->dc_pred_row[i]);
 | |
| 
 | |
|         for (int j = 0; j < 6; j++)
 | |
|             for (int i = 0; i < 6; i++)
 | |
|                 vp4_dc_predictor_reset(&dc_pred[j][i]);
 | |
| 
 | |
|         for (int sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
 | |
|             for (int sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
 | |
|                 vp4_dc_pred_before(s, dc_pred, sb_x);
 | |
|                 for (int j = 0; j < 16; j++) {
 | |
|                         int hx = hilbert_offset[j][0];
 | |
|                         int hy = hilbert_offset[j][1];
 | |
|                         int x  = 4 * sb_x + hx;
 | |
|                         int y  = 4 * sb_y + hy;
 | |
|                         VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
 | |
|                         int fragment, dc_block_type;
 | |
| 
 | |
|                         if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
 | |
|                             continue;
 | |
| 
 | |
|                         fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
 | |
| 
 | |
|                         if (s->all_fragments[fragment].coding_method == MODE_COPY)
 | |
|                             continue;
 | |
| 
 | |
|                         if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
 | |
|                             return -1;
 | |
| 
 | |
|                         dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
 | |
| 
 | |
|                         s->all_fragments[fragment].dc +=
 | |
|                             vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
 | |
| 
 | |
|                         this_dc_pred->type = dc_block_type,
 | |
|                         this_dc_pred->dc   = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
 | |
|                 }
 | |
|                 vp4_dc_pred_after(s, dc_pred, sb_x);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vp4_set_tokens_base(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function reverses the DC prediction for each coded fragment in
 | |
|  * the frame. Much of this function is adapted directly from the original
 | |
|  * VP3 source code.
 | |
|  */
 | |
| #define COMPATIBLE_FRAME(x)                                                   \
 | |
|     (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | |
| #define DC_COEFF(u) s->all_fragments[u].dc
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height)
 | |
| {
 | |
| #define PUL 8
 | |
| #define PU 4
 | |
| #define PUR 2
 | |
| #define PL 1
 | |
| 
 | |
|     int i = first_fragment;
 | |
| 
 | |
|     int predicted_dc;
 | |
| 
 | |
|     /* DC values for the left, up-left, up, and up-right fragments */
 | |
|     int vl, vul, vu, vur;
 | |
| 
 | |
|     /* indexes for the left, up-left, up, and up-right fragments */
 | |
|     int l, ul, u, ur;
 | |
| 
 | |
|     /*
 | |
|      * The 6 fields mean:
 | |
|      *   0: up-left multiplier
 | |
|      *   1: up multiplier
 | |
|      *   2: up-right multiplier
 | |
|      *   3: left multiplier
 | |
|      */
 | |
|     static const int predictor_transform[16][4] = {
 | |
|         {    0,   0,   0,   0 },
 | |
|         {    0,   0,   0, 128 }, // PL
 | |
|         {    0,   0, 128,   0 }, // PUR
 | |
|         {    0,   0,  53,  75 }, // PUR|PL
 | |
|         {    0, 128,   0,   0 }, // PU
 | |
|         {    0,  64,   0,  64 }, // PU |PL
 | |
|         {    0, 128,   0,   0 }, // PU |PUR
 | |
|         {    0,   0,  53,  75 }, // PU |PUR|PL
 | |
|         {  128,   0,   0,   0 }, // PUL
 | |
|         {    0,   0,   0, 128 }, // PUL|PL
 | |
|         {   64,   0,  64,   0 }, // PUL|PUR
 | |
|         {    0,   0,  53,  75 }, // PUL|PUR|PL
 | |
|         {    0, 128,   0,   0 }, // PUL|PU
 | |
|         { -104, 116,   0, 116 }, // PUL|PU |PL
 | |
|         {   24,  80,  24,   0 }, // PUL|PU |PUR
 | |
|         { -104, 116,   0, 116 }  // PUL|PU |PUR|PL
 | |
|     };
 | |
| 
 | |
|     /* This table shows which types of blocks can use other blocks for
 | |
|      * prediction. For example, INTRA is the only mode in this table to
 | |
|      * have a frame number of 0. That means INTRA blocks can only predict
 | |
|      * from other INTRA blocks. There are 2 golden frame coding types;
 | |
|      * blocks encoding in these modes can only predict from other blocks
 | |
|      * that were encoded with these 1 of these 2 modes. */
 | |
|     static const unsigned char compatible_frame[9] = {
 | |
|         1,    /* MODE_INTER_NO_MV */
 | |
|         0,    /* MODE_INTRA */
 | |
|         1,    /* MODE_INTER_PLUS_MV */
 | |
|         1,    /* MODE_INTER_LAST_MV */
 | |
|         1,    /* MODE_INTER_PRIOR_MV */
 | |
|         2,    /* MODE_USING_GOLDEN */
 | |
|         2,    /* MODE_GOLDEN_MV */
 | |
|         1,    /* MODE_INTER_FOUR_MV */
 | |
|         3     /* MODE_COPY */
 | |
|     };
 | |
|     int current_frame_type;
 | |
| 
 | |
|     /* there is a last DC predictor for each of the 3 frame types */
 | |
|     short last_dc[3];
 | |
| 
 | |
|     int transform = 0;
 | |
| 
 | |
|     vul =
 | |
|     vu  =
 | |
|     vur =
 | |
|     vl  = 0;
 | |
|     last_dc[0] =
 | |
|     last_dc[1] =
 | |
|     last_dc[2] = 0;
 | |
| 
 | |
|     /* for each fragment row... */
 | |
|     for (int y = 0; y < fragment_height; y++) {
 | |
|         /* for each fragment in a row... */
 | |
|         for (int x = 0; x < fragment_width; x++, i++) {
 | |
| 
 | |
|             /* reverse prediction if this block was coded */
 | |
|             if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
|                 current_frame_type =
 | |
|                     compatible_frame[s->all_fragments[i].coding_method];
 | |
| 
 | |
|                 transform = 0;
 | |
|                 if (x) {
 | |
|                     l  = i - 1;
 | |
|                     vl = DC_COEFF(l);
 | |
|                     if (COMPATIBLE_FRAME(l))
 | |
|                         transform |= PL;
 | |
|                 }
 | |
|                 if (y) {
 | |
|                     u  = i - fragment_width;
 | |
|                     vu = DC_COEFF(u);
 | |
|                     if (COMPATIBLE_FRAME(u))
 | |
|                         transform |= PU;
 | |
|                     if (x) {
 | |
|                         ul  = i - fragment_width - 1;
 | |
|                         vul = DC_COEFF(ul);
 | |
|                         if (COMPATIBLE_FRAME(ul))
 | |
|                             transform |= PUL;
 | |
|                     }
 | |
|                     if (x + 1 < fragment_width) {
 | |
|                         ur  = i - fragment_width + 1;
 | |
|                         vur = DC_COEFF(ur);
 | |
|                         if (COMPATIBLE_FRAME(ur))
 | |
|                             transform |= PUR;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (transform == 0) {
 | |
|                     /* if there were no fragments to predict from, use last
 | |
|                      * DC saved */
 | |
|                     predicted_dc = last_dc[current_frame_type];
 | |
|                 } else {
 | |
|                     /* apply the appropriate predictor transform */
 | |
|                     predicted_dc =
 | |
|                         (predictor_transform[transform][0] * vul) +
 | |
|                         (predictor_transform[transform][1] * vu) +
 | |
|                         (predictor_transform[transform][2] * vur) +
 | |
|                         (predictor_transform[transform][3] * vl);
 | |
| 
 | |
|                     predicted_dc /= 128;
 | |
| 
 | |
|                     /* check for outranging on the [ul u l] and
 | |
|                      * [ul u ur l] predictors */
 | |
|                     if ((transform == 15) || (transform == 13)) {
 | |
|                         if (FFABS(predicted_dc - vu) > 128)
 | |
|                             predicted_dc = vu;
 | |
|                         else if (FFABS(predicted_dc - vl) > 128)
 | |
|                             predicted_dc = vl;
 | |
|                         else if (FFABS(predicted_dc - vul) > 128)
 | |
|                             predicted_dc = vul;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* at long last, apply the predictor */
 | |
|                 DC_COEFF(i) += predicted_dc;
 | |
|                 /* save the DC */
 | |
|                 last_dc[current_frame_type] = DC_COEFF(i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_loop_filter(Vp3DecodeContext *s, int plane,
 | |
|                               int ystart, int yend)
 | |
| {
 | |
|     int *bounding_values = s->bounding_values_array + 127;
 | |
| 
 | |
|     int width           = s->fragment_width[!!plane];
 | |
|     int height          = s->fragment_height[!!plane];
 | |
|     int fragment        = s->fragment_start[plane] + ystart * width;
 | |
|     ptrdiff_t stride    = s->current_frame.f->linesize[plane];
 | |
|     uint8_t *plane_data = s->current_frame.f->data[plane];
 | |
|     if (!s->flipped_image)
 | |
|         stride = -stride;
 | |
|     plane_data += s->data_offset[plane] + 8 * ystart * stride;
 | |
| 
 | |
|     for (int y = ystart; y < yend; y++) {
 | |
|         for (int x = 0; x < width; x++) {
 | |
|             /* This code basically just deblocks on the edges of coded blocks.
 | |
|              * However, it has to be much more complicated because of the
 | |
|              * brain damaged deblock ordering used in VP3/Theora. Order matters
 | |
|              * because some pixels get filtered twice. */
 | |
|             if (s->all_fragments[fragment].coding_method != MODE_COPY) {
 | |
|                 /* do not perform left edge filter for left columns frags */
 | |
|                 if (x > 0) {
 | |
|                     s->vp3dsp.h_loop_filter(
 | |
|                         plane_data + 8 * x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform top edge filter for top row fragments */
 | |
|                 if (y > 0) {
 | |
|                     s->vp3dsp.v_loop_filter(
 | |
|                         plane_data + 8 * x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform right edge filter for right column
 | |
|                  * fragments or if right fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in next iteration) */
 | |
|                 if ((x < width - 1) &&
 | |
|                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
 | |
|                     s->vp3dsp.h_loop_filter(
 | |
|                         plane_data + 8 * x + 8,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform bottom edge filter for bottom row
 | |
|                  * fragments or if bottom fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in the next row) */
 | |
|                 if ((y < height - 1) &&
 | |
|                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
 | |
|                     s->vp3dsp.v_loop_filter(
 | |
|                         plane_data + 8 * x + 8 * stride,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fragment++;
 | |
|         }
 | |
|         plane_data += 8 * stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
 | |
|  * for the next block in coding order
 | |
|  */
 | |
| static inline int vp3_dequant(Vp3DecodeContext *s, const Vp3Fragment *frag,
 | |
|                               int plane, int inter, int16_t block[64])
 | |
| {
 | |
|     const int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
 | |
|     const uint8_t *perm = s->idct_scantable;
 | |
|     int i = 0;
 | |
| 
 | |
|     do {
 | |
|         int token = *s->dct_tokens[plane][i];
 | |
|         switch (token & 3) {
 | |
|         case 0: // EOB
 | |
|             if (--token < 4) // 0-3 are token types so the EOB run must now be 0
 | |
|                 s->dct_tokens[plane][i]++;
 | |
|             else
 | |
|                 *s->dct_tokens[plane][i] = token & ~3;
 | |
|             goto end;
 | |
|         case 1: // zero run
 | |
|             s->dct_tokens[plane][i]++;
 | |
|             i += (token >> 2) & 0x7f;
 | |
|             if (i > 63) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
 | |
|                 return i;
 | |
|             }
 | |
|             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
 | |
|             i++;
 | |
|             break;
 | |
|         case 2: // coeff
 | |
|             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
 | |
|             s->dct_tokens[plane][i++]++;
 | |
|             break;
 | |
|         default: // shouldn't happen
 | |
|             return i;
 | |
|         }
 | |
|     } while (i < 64);
 | |
|     // return value is expected to be a valid level
 | |
|     i--;
 | |
| end:
 | |
|     // the actual DC+prediction is in the fragment structure
 | |
|     block[0] = frag->dc * s->qmat[0][inter][plane][0];
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * called when all pixels up to row y are complete
 | |
|  */
 | |
| static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
 | |
| {
 | |
|     int h, cy;
 | |
|     int offset[AV_NUM_DATA_POINTERS];
 | |
| 
 | |
|     if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
 | |
|         int y_flipped = s->flipped_image ? s->height - y : y;
 | |
| 
 | |
|         /* At the end of the frame, report INT_MAX instead of the height of
 | |
|          * the frame. This makes the other threads' ff_thread_await_progress()
 | |
|          * calls cheaper, because they don't have to clip their values. */
 | |
|         ff_progress_frame_report(&s->current_frame,
 | |
|                                  y_flipped == s->height ? INT_MAX
 | |
|                                                         : y_flipped - 1);
 | |
|     }
 | |
| 
 | |
|     if (!s->avctx->draw_horiz_band)
 | |
|         return;
 | |
| 
 | |
|     h = y - s->last_slice_end;
 | |
|     s->last_slice_end = y;
 | |
|     y -= h;
 | |
| 
 | |
|     if (!s->flipped_image)
 | |
|         y = s->height - y - h;
 | |
| 
 | |
|     cy        = y >> s->chroma_y_shift;
 | |
|     offset[0] = s->current_frame.f->linesize[0] * y;
 | |
|     offset[1] = s->current_frame.f->linesize[1] * cy;
 | |
|     offset[2] = s->current_frame.f->linesize[2] * cy;
 | |
|     for (int i = 3; i < AV_NUM_DATA_POINTERS; i++)
 | |
|         offset[i] = 0;
 | |
| 
 | |
|     emms_c();
 | |
|     s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Wait for the reference frame of the current fragment.
 | |
|  * The progress value is in luma pixel rows.
 | |
|  */
 | |
| static void await_reference_row(Vp3DecodeContext *s, const Vp3Fragment *fragment,
 | |
|                                 int motion_y, int y)
 | |
| {
 | |
|     const ProgressFrame *ref_frame;
 | |
|     int ref_row;
 | |
|     int border = motion_y & 1;
 | |
| 
 | |
|     if (fragment->coding_method == MODE_USING_GOLDEN ||
 | |
|         fragment->coding_method == MODE_GOLDEN_MV)
 | |
|         ref_frame = &s->golden_frame;
 | |
|     else
 | |
|         ref_frame = &s->last_frame;
 | |
| 
 | |
|     ref_row = y + (motion_y >> 1);
 | |
|     ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
 | |
| 
 | |
|     ff_progress_frame_await(ref_frame, ref_row);
 | |
| }
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
| /**
 | |
|  * @return non-zero if temp (edge_emu_buffer) was populated
 | |
|  */
 | |
| static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
 | |
|                               const uint8_t *motion_source, ptrdiff_t stride,
 | |
|                               int src_x, int src_y, uint8_t *temp)
 | |
| {
 | |
|     int motion_shift = plane ? 4 : 2;
 | |
|     int subpel_mask = plane ? 3 : 1;
 | |
|     int *bounding_values = s->bounding_values_array + 127;
 | |
| 
 | |
|     int x, y;
 | |
|     int x2, y2;
 | |
|     int x_subpel, y_subpel;
 | |
|     int x_offset, y_offset;
 | |
| 
 | |
|     int block_width = plane ? 8 : 16;
 | |
|     int plane_width  = s->width  >> (plane && s->chroma_x_shift);
 | |
|     int plane_height = s->height >> (plane && s->chroma_y_shift);
 | |
| 
 | |
| #define loop_stride 12
 | |
|     uint8_t loop[12 * loop_stride];
 | |
| 
 | |
|     /* using division instead of shift to correctly handle negative values */
 | |
|     x = 8 * bx + motion_x / motion_shift;
 | |
|     y = 8 * by + motion_y / motion_shift;
 | |
| 
 | |
|     x_subpel = motion_x & subpel_mask;
 | |
|     y_subpel = motion_y & subpel_mask;
 | |
| 
 | |
|     if (x_subpel || y_subpel) {
 | |
|         x--;
 | |
|         y--;
 | |
| 
 | |
|         if (x_subpel)
 | |
|             x = FFMIN(x, x + FFSIGN(motion_x));
 | |
| 
 | |
|         if (y_subpel)
 | |
|             y = FFMIN(y, y + FFSIGN(motion_y));
 | |
| 
 | |
|         x2 = x + block_width;
 | |
|         y2 = y + block_width;
 | |
| 
 | |
|         if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
 | |
|             return 0;
 | |
| 
 | |
|         x_offset = (-(x + 2) & 7) + 2;
 | |
|         y_offset = (-(y + 2) & 7) + 2;
 | |
| 
 | |
|         av_assert1(!(x_offset > 8 + x_subpel && y_offset > 8 + y_subpel));
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
 | |
|              loop_stride, stride,
 | |
|              12, 12, src_x - 1, src_y - 1,
 | |
|              plane_width,
 | |
|              plane_height);
 | |
| 
 | |
|         if (x_offset <= 8 + x_subpel)
 | |
|             ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
 | |
| 
 | |
|         if (y_offset <= 8 + y_subpel)
 | |
|             ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         x_offset = -x & 7;
 | |
|         y_offset = -y & 7;
 | |
| 
 | |
|         if (!x_offset && !y_offset)
 | |
|             return 0;
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
 | |
|              loop_stride, stride,
 | |
|              12, 12, src_x - 1, src_y - 1,
 | |
|              plane_width,
 | |
|              plane_height);
 | |
| 
 | |
| #define safe_loop_filter(name, ptr, stride, bounding_values) \
 | |
|     if ((uintptr_t)(ptr) & 7) \
 | |
|         s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
 | |
|     else \
 | |
|         s->vp3dsp.name(ptr, stride, bounding_values);
 | |
| 
 | |
|         if (x_offset)
 | |
|             safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
 | |
| 
 | |
|         if (y_offset)
 | |
|             safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 9; i++)
 | |
|         memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Perform the final rendering for a particular slice of data.
 | |
|  * The slice number ranges from 0..(c_superblock_height - 1).
 | |
|  */
 | |
| static void render_slice(Vp3DecodeContext *s, int slice)
 | |
| {
 | |
|     int16_t *block = s->block;
 | |
|     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | |
|     /* When decoding keyframes, the earlier frames may not be available,
 | |
|      * so we just use the current frame in this case instead;
 | |
|      * it also avoid using undefined pointer arithmetic. Nothing is
 | |
|      * ever read from these frames in case of a keyframe. */
 | |
|     const AVFrame *last_frame   = s->last_frame.f   ?
 | |
|                                       s->last_frame.f   : s->current_frame.f;
 | |
|     const AVFrame *golden_frame = s->golden_frame.f ?
 | |
|                                       s->golden_frame.f : s->current_frame.f;
 | |
|     int motion_halfpel_index;
 | |
|     int first_pixel;
 | |
| 
 | |
|     if (slice >= s->c_superblock_height)
 | |
|         return;
 | |
| 
 | |
|     for (int plane = 0; plane < 3; plane++) {
 | |
|         uint8_t *output_plane = s->current_frame.f->data[plane] +
 | |
|                                 s->data_offset[plane];
 | |
|         const uint8_t *last_plane = last_frame->data[plane] +
 | |
|                               s->data_offset[plane];
 | |
|         const uint8_t *golden_plane = golden_frame->data[plane] +
 | |
|                                 s->data_offset[plane];
 | |
|         ptrdiff_t stride = s->current_frame.f->linesize[plane];
 | |
|         int plane_width  = s->width  >> (plane && s->chroma_x_shift);
 | |
|         int plane_height = s->height >> (plane && s->chroma_y_shift);
 | |
|         const int8_t (*motion_val)[2] = s->motion_val[!!plane];
 | |
| 
 | |
|         int sb_y = slice << (!plane && s->chroma_y_shift);
 | |
|         int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
 | |
|         int slice_width  = plane ? s->c_superblock_width
 | |
|                                  : s->y_superblock_width;
 | |
| 
 | |
|         int fragment_width  = s->fragment_width[!!plane];
 | |
|         int fragment_height = s->fragment_height[!!plane];
 | |
|         int fragment_start  = s->fragment_start[plane];
 | |
| 
 | |
|         int do_await = !plane && HAVE_THREADS &&
 | |
|                        (s->avctx->active_thread_type & FF_THREAD_FRAME);
 | |
| 
 | |
|         if (!s->flipped_image)
 | |
|             stride = -stride;
 | |
|         if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
 | |
|             continue;
 | |
| 
 | |
|         /* for each superblock row in the slice (both of them)... */
 | |
|         for (; sb_y < slice_height; sb_y++) {
 | |
|             /* for each superblock in a row... */
 | |
|             for (int sb_x = 0; sb_x < slice_width; sb_x++) {
 | |
|                 /* for each block in a superblock... */
 | |
|                 for (int j = 0; j < 16; j++) {
 | |
|                     int x        = 4 * sb_x + hilbert_offset[j][0];
 | |
|                     int y        = 4 * sb_y + hilbert_offset[j][1];
 | |
|                     int fragment = y * fragment_width + x;
 | |
| 
 | |
|                     int i = fragment_start + fragment;
 | |
| 
 | |
|                     // bounds check
 | |
|                     if (x >= fragment_width || y >= fragment_height)
 | |
|                         continue;
 | |
| 
 | |
|                     first_pixel = 8 * y * stride + 8 * x;
 | |
| 
 | |
|                     if (do_await &&
 | |
|                         s->all_fragments[i].coding_method != MODE_INTRA)
 | |
|                         await_reference_row(s, &s->all_fragments[i],
 | |
|                                             motion_val[fragment][1],
 | |
|                                             (16 * y) >> s->chroma_y_shift);
 | |
| 
 | |
|                     /* transform if this block was coded */
 | |
|                     if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
|                         const uint8_t *motion_source;
 | |
|                         if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | |
|                             (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | |
|                             motion_source = golden_plane;
 | |
|                         else
 | |
|                             motion_source = last_plane;
 | |
| 
 | |
|                         motion_source       += first_pixel;
 | |
|                         motion_halfpel_index = 0;
 | |
| 
 | |
|                         /* sort out the motion vector if this fragment is coded
 | |
|                          * using a motion vector method */
 | |
|                         if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | |
|                             (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | |
|                             int src_x, src_y;
 | |
|                             int standard_mc = 1;
 | |
|                             motion_x = motion_val[fragment][0];
 | |
|                             motion_y = motion_val[fragment][1];
 | |
| #if CONFIG_VP4_DECODER
 | |
|                             if (plane && s->version >= 2) {
 | |
|                                 motion_x = (motion_x >> 1) | (motion_x & 1);
 | |
|                                 motion_y = (motion_y >> 1) | (motion_y & 1);
 | |
|                             }
 | |
| #endif
 | |
| 
 | |
|                             src_x = (motion_x >> 1) + 8 * x;
 | |
|                             src_y = (motion_y >> 1) + 8 * y;
 | |
| 
 | |
|                             motion_halfpel_index = motion_x & 0x01;
 | |
|                             motion_source       += (motion_x >> 1);
 | |
| 
 | |
|                             motion_halfpel_index |= (motion_y & 0x01) << 1;
 | |
|                             motion_source        += ((motion_y >> 1) * stride);
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
|                             if (s->version >= 2) {
 | |
|                                 uint8_t *temp = s->edge_emu_buffer;
 | |
|                                 if (stride < 0)
 | |
|                                     temp -= 8 * stride;
 | |
|                                 if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
 | |
|                                     motion_source = temp;
 | |
|                                     standard_mc = 0;
 | |
|                                 }
 | |
|                             }
 | |
| #endif
 | |
| 
 | |
|                             if (standard_mc && (
 | |
|                                 src_x < 0 || src_y < 0 ||
 | |
|                                 src_x + 9 >= plane_width ||
 | |
|                                 src_y + 9 >= plane_height)) {
 | |
|                                 uint8_t *temp = s->edge_emu_buffer;
 | |
|                                 if (stride < 0)
 | |
|                                     temp -= 8 * stride;
 | |
| 
 | |
|                                 s->vdsp.emulated_edge_mc(temp, motion_source,
 | |
|                                                          stride, stride,
 | |
|                                                          9, 9, src_x, src_y,
 | |
|                                                          plane_width,
 | |
|                                                          plane_height);
 | |
|                                 motion_source = temp;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         /* first, take care of copying a block from either the
 | |
|                          * previous or the golden frame */
 | |
|                         if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | |
|                             /* Note, it is possible to implement all MC cases
 | |
|                              * with put_no_rnd_pixels_l2 which would look more
 | |
|                              * like the VP3 source but this would be slower as
 | |
|                              * put_no_rnd_pixels_tab is better optimized */
 | |
|                             if (motion_halfpel_index != 3) {
 | |
|                                 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | |
|                                     output_plane + first_pixel,
 | |
|                                     motion_source, stride, 8);
 | |
|                             } else {
 | |
|                                 /* d is 0 if motion_x and _y have the same sign,
 | |
|                                  * else -1 */
 | |
|                                 int d = (motion_x ^ motion_y) >> 31;
 | |
|                                 s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
 | |
|                                                                motion_source - d,
 | |
|                                                                motion_source + stride + 1 + d,
 | |
|                                                                stride, 8);
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         /* invert DCT and place (or add) in final output */
 | |
| 
 | |
|                         if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | |
|                             vp3_dequant(s, s->all_fragments + i,
 | |
|                                         plane, 0, block);
 | |
|                             s->vp3dsp.idct_put(output_plane + first_pixel,
 | |
|                                                stride,
 | |
|                                                block);
 | |
|                         } else {
 | |
|                             if (vp3_dequant(s, s->all_fragments + i,
 | |
|                                             plane, 1, block)) {
 | |
|                                 s->vp3dsp.idct_add(output_plane + first_pixel,
 | |
|                                                    stride,
 | |
|                                                    block);
 | |
|                             } else {
 | |
|                                 s->vp3dsp.idct_dc_add(output_plane + first_pixel,
 | |
|                                                       stride, block);
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* copy directly from the previous frame */
 | |
|                         s->hdsp.put_pixels_tab[1][0](
 | |
|                             output_plane + first_pixel,
 | |
|                             last_plane + first_pixel,
 | |
|                             stride, 8);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Filter up to the last row in the superblock row
 | |
|             if (s->version < 2 && !s->skip_loop_filter)
 | |
|                 apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
 | |
|                                   FFMIN(4 * sb_y + 3, fragment_height - 1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* this looks like a good place for slice dispatch... */
 | |
|     /* algorithm:
 | |
|      *   if (slice == s->macroblock_height - 1)
 | |
|      *     dispatch (both last slice & 2nd-to-last slice);
 | |
|      *   else if (slice > 0)
 | |
|      *     dispatch (slice - 1);
 | |
|      */
 | |
| 
 | |
|     vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
 | |
|                                  s->height - 16));
 | |
| }
 | |
| 
 | |
| static av_cold void init_tables_once(void)
 | |
| {
 | |
|     VLCInitState state = VLC_INIT_STATE(mode_code_vlc);
 | |
| 
 | |
|     VLC_INIT_STATIC_TABLE_FROM_LENGTHS(superblock_run_length_vlc,
 | |
|                                        SUPERBLOCK_VLC_BITS, 34,
 | |
|                                        superblock_run_length_vlc_lens, 1,
 | |
|                                        NULL, 0, 0, 1, 0);
 | |
| 
 | |
|     VLC_INIT_STATIC_TABLE_FROM_LENGTHS(fragment_run_length_vlc, 5, 30,
 | |
|                                        fragment_run_length_vlc_len, 1,
 | |
|                                        NULL, 0, 0, 0, 0);
 | |
| 
 | |
|     VLC_INIT_STATIC_TABLE_FROM_LENGTHS(motion_vector_vlc, VP3_MV_VLC_BITS, 63,
 | |
|                                        &motion_vector_vlc_table[0][1], 2,
 | |
|                                        &motion_vector_vlc_table[0][0], 2, 1,
 | |
|                                        -31, 0);
 | |
| 
 | |
|     ff_vlc_init_tables_from_lengths(&state, 4, 8,
 | |
|                                     mode_code_vlc_len, 1,
 | |
|                                     NULL, 0, 0, 0, 0);
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
|     for (int j = 0; j < 2; j++)
 | |
|         for (int i = 0; i < 7; i++) {
 | |
|             vp4_mv_vlc_table[j][i] =
 | |
|                 ff_vlc_init_tables_from_lengths(&state, VP4_MV_VLC_BITS, 63,
 | |
|                                                 &vp4_mv_vlc[j][i][0][1], 2,
 | |
|                                                 &vp4_mv_vlc[j][i][0][0], 2, 1,
 | |
|                                                 -31, 0);
 | |
|         }
 | |
| 
 | |
|     /* version >= 2 */
 | |
|     for (int i = 0; i < 2; i++) {
 | |
|         block_pattern_vlc[i] =
 | |
|             ff_vlc_init_tables(&state, 5, 14,
 | |
|                                &vp4_block_pattern_vlc[i][0][1], 2, 1,
 | |
|                                &vp4_block_pattern_vlc[i][0][0], 2, 1, 0);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Allocate tables for per-frame data in Vp3DecodeContext
 | |
| static av_cold int allocate_tables(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     free_tables(avctx);
 | |
| 
 | |
|     y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | |
| 
 | |
|     /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
 | |
|     s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count));
 | |
|     s->all_fragments     = av_calloc(s->fragment_count, sizeof(*s->all_fragments));
 | |
| 
 | |
|     s-> kf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int));
 | |
|     s->nkf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int));
 | |
|     memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
 | |
| 
 | |
|     s->dct_tokens_base = av_calloc(s->fragment_count,
 | |
|                                    64 * sizeof(*s->dct_tokens_base));
 | |
|     s->motion_val[0] = av_calloc(y_fragment_count, sizeof(*s->motion_val[0]));
 | |
|     s->motion_val[1] = av_calloc(c_fragment_count, sizeof(*s->motion_val[1]));
 | |
| 
 | |
|     /* work out the block mapping tables */
 | |
|     s->superblock_fragments = av_calloc(s->superblock_count, 16 * sizeof(int));
 | |
|     s->macroblock_coding    = av_mallocz(s->macroblock_count + 1);
 | |
| 
 | |
|     s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
 | |
| 
 | |
|     if (!s->superblock_coding    || !s->all_fragments          ||
 | |
|         !s->dct_tokens_base      || !s->kf_coded_fragment_list ||
 | |
|         !s->nkf_coded_fragment_list ||
 | |
|         !s->superblock_fragments || !s->macroblock_coding      ||
 | |
|         !s->dc_pred_row ||
 | |
|         !s->motion_val[0]        || !s->motion_val[1]) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     init_block_mapping(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold void free_vlc_tables(FFRefStructOpaque unused, void *obj)
 | |
| {
 | |
|     CoeffVLCs *vlcs = obj;
 | |
| 
 | |
|     for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++)
 | |
|         ff_vlc_free(&vlcs->vlcs[i]);
 | |
| }
 | |
| 
 | |
| static av_cold int vp3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     static AVOnce init_static_once = AV_ONCE_INIT;
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
|     int c_width;
 | |
|     int c_height;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     if (avctx->codec_tag == MKTAG('V', 'P', '4', '0')) {
 | |
|         s->version = 3;
 | |
| #if !CONFIG_VP4_DECODER
 | |
|         av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n");
 | |
|         return AVERROR_DECODER_NOT_FOUND;
 | |
| #endif
 | |
|     } else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
 | |
|         s->version = 0;
 | |
|     else
 | |
|         s->version = 1;
 | |
| 
 | |
|     s->avctx  = avctx;
 | |
|     s->width  = FFALIGN(avctx->coded_width, 16);
 | |
|     s->height = FFALIGN(avctx->coded_height, 16);
 | |
|     if (s->width < 18)
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     if (avctx->codec_id != AV_CODEC_ID_THEORA)
 | |
|         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | |
|     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
 | |
|     ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
 | |
|     ff_videodsp_init(&s->vdsp, 8);
 | |
|     ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
 | |
| 
 | |
|     for (int i = 0; i < 64; i++) {
 | |
| #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
 | |
|         s->idct_permutation[i] = TRANSPOSE(i);
 | |
|         s->idct_scantable[i]   = TRANSPOSE(ff_zigzag_direct[i]);
 | |
| #undef TRANSPOSE
 | |
|     }
 | |
| 
 | |
|     /* initialize to an impossible value which will force a recalculation
 | |
|      * in the first frame decode */
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     s->y_superblock_width  = (s->width  + 31) / 32;
 | |
|     s->y_superblock_height = (s->height + 31) / 32;
 | |
|     s->y_superblock_count  = s->y_superblock_width * s->y_superblock_height;
 | |
| 
 | |
|     /* work out the dimensions for the C planes */
 | |
|     c_width                = s->width >> s->chroma_x_shift;
 | |
|     c_height               = s->height >> s->chroma_y_shift;
 | |
|     s->c_superblock_width  = (c_width  + 31) / 32;
 | |
|     s->c_superblock_height = (c_height + 31) / 32;
 | |
|     s->c_superblock_count  = s->c_superblock_width * s->c_superblock_height;
 | |
| 
 | |
|     s->superblock_count   = s->y_superblock_count + (s->c_superblock_count * 2);
 | |
|     s->u_superblock_start = s->y_superblock_count;
 | |
|     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
 | |
| 
 | |
|     s->macroblock_width  = (s->width  + 15) / 16;
 | |
|     s->macroblock_height = (s->height + 15) / 16;
 | |
|     s->macroblock_count  = s->macroblock_width * s->macroblock_height;
 | |
|     s->c_macroblock_width  = (c_width  + 15) / 16;
 | |
|     s->c_macroblock_height = (c_height + 15) / 16;
 | |
|     s->c_macroblock_count  = s->c_macroblock_width * s->c_macroblock_height;
 | |
|     s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count;
 | |
| 
 | |
|     s->fragment_width[0]  = s->width / FRAGMENT_PIXELS;
 | |
|     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
 | |
|     s->fragment_width[1]  = s->fragment_width[0] >> s->chroma_x_shift;
 | |
|     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
 | |
| 
 | |
|     /* fragment count covers all 8x8 blocks for all 3 planes */
 | |
|     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
 | |
|     s->fragment_count    = y_fragment_count + 2 * c_fragment_count;
 | |
|     s->fragment_start[1] = y_fragment_count;
 | |
|     s->fragment_start[2] = y_fragment_count + c_fragment_count;
 | |
| 
 | |
|     if (!s->theora_tables) {
 | |
|         for (int i = 0; i < 64; i++) {
 | |
|             s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i];
 | |
|             s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i];
 | |
|             s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i];
 | |
|             s->base_matrix[0][i]        = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i];
 | |
|             s->base_matrix[1][i]        = s->version < 2 ? ff_mjpeg_std_chrominance_quant_tbl[i] : vp4_generic_dequant[i];
 | |
|             s->base_matrix[2][i]        = s->version < 2 ? vp31_inter_dequant[i]   : vp4_generic_dequant[i];
 | |
|             s->filter_limit_values[i]   = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i];
 | |
|         }
 | |
| 
 | |
|         for (int inter = 0; inter < 2; inter++) {
 | |
|             for (int plane = 0; plane < 3; plane++) {
 | |
|                 s->qr_count[inter][plane]   = 1;
 | |
|                 s->qr_size[inter][plane][0] = 63;
 | |
|                 s->qr_base[inter][plane][0] =
 | |
|                 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!avctx->internal->is_copy) {
 | |
|         CoeffVLCs *vlcs = ff_refstruct_alloc_ext(sizeof(*s->coeff_vlc), 0,
 | |
|                                                  NULL, free_vlc_tables);
 | |
|         if (!vlcs)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         s->coeff_vlc = vlcs;
 | |
| 
 | |
|         if (!s->theora_tables) {
 | |
|             const uint8_t (*bias_tabs)[32][2];
 | |
| 
 | |
|             /* init VLC tables */
 | |
|             bias_tabs = CONFIG_VP4_DECODER && s->version >= 2 ? vp4_bias : vp3_bias;
 | |
|             for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++) {
 | |
|                 ret = ff_vlc_init_from_lengths(&vlcs->vlcs[i], 11, 32,
 | |
|                                                &bias_tabs[i][0][1], 2,
 | |
|                                                &bias_tabs[i][0][0], 2, 1,
 | |
|                                                0, 0, avctx);
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
|                 vlcs->vlc_tabs[i] = vlcs->vlcs[i].table;
 | |
|             }
 | |
|         } else {
 | |
|             for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++) {
 | |
|                 const HuffTable *tab = &s->huffman_table[i];
 | |
| 
 | |
|                 ret = ff_vlc_init_from_lengths(&vlcs->vlcs[i], 11, tab->nb_entries,
 | |
|                                                &tab->entries[0].len, sizeof(*tab->entries),
 | |
|                                                &tab->entries[0].sym, sizeof(*tab->entries), 1,
 | |
|                                                0, 0, avctx);
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
|                 vlcs->vlc_tabs[i] = vlcs->vlcs[i].table;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ff_thread_once(&init_static_once, init_tables_once);
 | |
| 
 | |
|     return allocate_tables(avctx);
 | |
| }
 | |
| 
 | |
| /// Release and shuffle frames after decode finishes
 | |
| static void update_frames(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (s->keyframe)
 | |
|         ff_progress_frame_replace(&s->golden_frame, &s->current_frame);
 | |
| 
 | |
|     /* shuffle frames */
 | |
|     ff_progress_frame_unref(&s->last_frame);
 | |
|     FFSWAP(ProgressFrame, s->last_frame, s->current_frame);
 | |
| }
 | |
| 
 | |
| #if HAVE_THREADS
 | |
| static void ref_frames(Vp3DecodeContext *dst, const Vp3DecodeContext *src)
 | |
| {
 | |
|     ff_progress_frame_replace(&dst->current_frame, &src->current_frame);
 | |
|     ff_progress_frame_replace(&dst->golden_frame,  &src->golden_frame);
 | |
|     ff_progress_frame_replace(&dst->last_frame,    &src->last_frame);
 | |
| }
 | |
| 
 | |
| static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
 | |
| {
 | |
|     Vp3DecodeContext *s = dst->priv_data;
 | |
|     const Vp3DecodeContext *s1 = src->priv_data;
 | |
|     int qps_changed = 0;
 | |
| 
 | |
|     ff_refstruct_replace(&s->coeff_vlc, s1->coeff_vlc);
 | |
| 
 | |
|     // copy previous frame data
 | |
|     ref_frames(s, s1);
 | |
|     if (!s1->current_frame.f ||
 | |
|         s->width != s1->width || s->height != s1->height) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (s != s1) {
 | |
|         s->keyframe = s1->keyframe;
 | |
| 
 | |
|         // copy qscale data if necessary
 | |
|         for (int i = 0; i < 3; i++) {
 | |
|             if (s->qps[i] != s1->qps[1]) {
 | |
|                 qps_changed = 1;
 | |
|                 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->qps[0] != s1->qps[0])
 | |
|             memcpy(&s->bounding_values_array, &s1->bounding_values_array,
 | |
|                    sizeof(s->bounding_values_array));
 | |
| 
 | |
|         if (qps_changed) {
 | |
|             memcpy(s->qps,      s1->qps,      sizeof(s->qps));
 | |
|             memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps));
 | |
|             s->nqps = s1->nqps;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     update_frames(dst);
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame,
 | |
|                             int *got_frame, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf  = avpkt->data;
 | |
|     int buf_size        = avpkt->size;
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int ret;
 | |
| 
 | |
|     if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
 | |
|         return ret;
 | |
| 
 | |
| #if CONFIG_THEORA_DECODER
 | |
|     if (s->theora && get_bits1(&gb)) {
 | |
|         int type = get_bits(&gb, 7);
 | |
|         skip_bits_long(&gb, 6*8); /* "theora" */
 | |
| 
 | |
|         if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         if (type == 0) {
 | |
|             vp3_decode_end(avctx);
 | |
|             ret = theora_decode_header(avctx, &gb);
 | |
| 
 | |
|             if (ret >= 0)
 | |
|                 ret = vp3_decode_init(avctx);
 | |
|             if (ret < 0) {
 | |
|                 vp3_decode_end(avctx);
 | |
|                 return ret;
 | |
|             }
 | |
|             return buf_size;
 | |
|         } else if (type == 2) {
 | |
|             vp3_decode_end(avctx);
 | |
|             ret = theora_decode_tables(avctx, &gb);
 | |
|             if (ret >= 0)
 | |
|                 ret = vp3_decode_init(avctx);
 | |
|             if (ret < 0) {
 | |
|                 vp3_decode_end(avctx);
 | |
|                 return ret;
 | |
|             }
 | |
|             return buf_size;
 | |
|         }
 | |
| 
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Header packet passed to frame decoder, skipping\n");
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     s->keyframe = !get_bits1(&gb);
 | |
|     if (!s->all_fragments) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!s->theora)
 | |
|         skip_bits(&gb, 1);
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         s->last_qps[i] = s->qps[i];
 | |
| 
 | |
|     s->nqps = 0;
 | |
|     do {
 | |
|         s->qps[s->nqps++] = get_bits(&gb, 6);
 | |
|     } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
 | |
|     for (int i = s->nqps; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | |
|         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%"PRId64": Q index = %d\n",
 | |
|                s->keyframe ? "key" : "", avctx->frame_num + 1, s->qps[0]);
 | |
| 
 | |
|     s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
 | |
|                           avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
 | |
|                                                                   : AVDISCARD_NONKEY);
 | |
| 
 | |
|     if (s->qps[0] != s->last_qps[0])
 | |
|         init_loop_filter(s);
 | |
| 
 | |
|     for (int i = 0; i < s->nqps; i++)
 | |
|         // reinit all dequantizers if the first one changed, because
 | |
|         // the DC of the first quantizer must be used for all matrices
 | |
|         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
 | |
|             init_dequantizer(s, i);
 | |
| 
 | |
|     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
 | |
|         return buf_size;
 | |
| 
 | |
|     ff_progress_frame_unref(&s->current_frame);
 | |
|     ret = ff_progress_frame_get_buffer(avctx, &s->current_frame,
 | |
|                                        AV_GET_BUFFER_FLAG_REF);
 | |
|     if (ret < 0) {
 | |
|         // Don't goto error here, as one can't report progress on or
 | |
|         // unref a non-existent frame.
 | |
|         return ret;
 | |
|     }
 | |
|     s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
 | |
|                                                 : AV_PICTURE_TYPE_P;
 | |
|     if (s->keyframe)
 | |
|         s->current_frame.f->flags |= AV_FRAME_FLAG_KEY;
 | |
|     else
 | |
|         s->current_frame.f->flags &= ~AV_FRAME_FLAG_KEY;
 | |
| 
 | |
|     if (!s->edge_emu_buffer) {
 | |
|         s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
 | |
|         if (!s->edge_emu_buffer) {
 | |
|             ret = AVERROR(ENOMEM);
 | |
|             goto error;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (!s->theora) {
 | |
|             skip_bits(&gb, 4); /* width code */
 | |
|             skip_bits(&gb, 4); /* height code */
 | |
|             if (s->version) {
 | |
|                 int version = get_bits(&gb, 5);
 | |
| #if !CONFIG_VP4_DECODER
 | |
|                 if (version >= 2) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n");
 | |
|                     return AVERROR_DECODER_NOT_FOUND;
 | |
|                 }
 | |
| #endif
 | |
|                 s->version = version;
 | |
|                 if (avctx->frame_num == 0)
 | |
|                     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                            "VP version: %d\n", s->version);
 | |
|             }
 | |
|         }
 | |
|         if (s->version || s->theora) {
 | |
|             if (get_bits1(&gb))
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Warning, unsupported keyframe coding type?!\n");
 | |
|             skip_bits(&gb, 2); /* reserved? */
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
|             if (s->version >= 2) {
 | |
|                 int mb_height, mb_width;
 | |
|                 int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
 | |
| 
 | |
|                 mb_height = get_bits(&gb, 8);
 | |
|                 mb_width  = get_bits(&gb, 8);
 | |
|                 if (mb_height != s->macroblock_height ||
 | |
|                     mb_width != s->macroblock_width)
 | |
|                     avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
 | |
| 
 | |
|                 mb_width_mul = get_bits(&gb, 5);
 | |
|                 mb_width_div = get_bits(&gb, 3);
 | |
|                 mb_height_mul = get_bits(&gb, 5);
 | |
|                 mb_height_div = get_bits(&gb, 3);
 | |
|                 if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
 | |
|                     avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
 | |
| 
 | |
|                 if (get_bits(&gb, 2))
 | |
|                     avpriv_request_sample(s->avctx, "unknown bits");
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     } else {
 | |
|         if (!s->golden_frame.f) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING,
 | |
|                    "vp3: first frame not a keyframe\n");
 | |
| 
 | |
|             if ((ret = ff_progress_frame_get_buffer(avctx, &s->golden_frame,
 | |
|                                                     AV_GET_BUFFER_FLAG_REF)) < 0)
 | |
|                 goto error;
 | |
|             s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
 | |
|             ff_progress_frame_replace(&s->last_frame, &s->golden_frame);
 | |
|             ff_progress_frame_report(&s->golden_frame, INT_MAX);
 | |
|         }
 | |
|     }
 | |
|     ff_thread_finish_setup(avctx);
 | |
| 
 | |
|     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
 | |
| 
 | |
|     if (s->version < 2) {
 | |
|         if ((ret = unpack_superblocks(s, &gb)) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
 | |
|             goto error;
 | |
|         }
 | |
| #if CONFIG_VP4_DECODER
 | |
|     } else {
 | |
|         if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
 | |
|             goto error;
 | |
|     }
 | |
| #endif
 | |
|     }
 | |
|     if ((ret = unpack_modes(s, &gb)) < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (ret = unpack_vectors(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if ((ret = unpack_block_qpis(s, &gb)) < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (s->version < 2) {
 | |
|         if ((ret = unpack_dct_coeffs(s, &gb)) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
 | |
|             goto error;
 | |
|         }
 | |
| #if CONFIG_VP4_DECODER
 | |
|     } else {
 | |
|         if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
 | |
|             goto error;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|         int height = s->height >> (i && s->chroma_y_shift);
 | |
|         if (s->flipped_image)
 | |
|             s->data_offset[i] = 0;
 | |
|         else
 | |
|             s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
 | |
|     }
 | |
| 
 | |
|     s->last_slice_end = 0;
 | |
|     for (int i = 0; i < s->c_superblock_height; i++)
 | |
|         render_slice(s, i);
 | |
| 
 | |
|     // filter the last row
 | |
|     if (s->version < 2)
 | |
|         for (int i = 0; i < 3; i++) {
 | |
|             int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
 | |
|             apply_loop_filter(s, i, row, row + 1);
 | |
|         }
 | |
|     vp3_draw_horiz_band(s, s->height);
 | |
| 
 | |
|     /* output frame, offset as needed */
 | |
|     if ((ret = av_frame_ref(frame, s->current_frame.f)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     frame->crop_left   = s->offset_x;
 | |
|     frame->crop_right  = avctx->coded_width - avctx->width - s->offset_x;
 | |
|     frame->crop_top    = s->offset_y;
 | |
|     frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
 | |
| 
 | |
|     *got_frame = 1;
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
 | |
|         update_frames(avctx);
 | |
| 
 | |
|     return buf_size;
 | |
| 
 | |
| error:
 | |
|     ff_progress_frame_report(&s->current_frame, INT_MAX);
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
 | |
|         av_frame_unref(s->current_frame.f);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length,
 | |
|                              AVCodecContext *avctx)
 | |
| {
 | |
|     if (get_bits1(gb)) {
 | |
|         int token;
 | |
|         if (huff->nb_entries >= 32) { /* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         token = get_bits(gb, 5);
 | |
|         ff_dlog(avctx, "code length %d, curr entry %d, token %d\n",
 | |
|                 length, huff->nb_entries, token);
 | |
|         huff->entries[huff->nb_entries++] = (HuffEntry){ length, token };
 | |
|     } else {
 | |
|         /* The following bound follows from the fact that nb_entries <= 32. */
 | |
|         if (length >= 31) { /* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         length++;
 | |
|         if (read_huffman_tree(huff, gb, length, avctx))
 | |
|             return -1;
 | |
|         if (read_huffman_tree(huff, gb, length, avctx))
 | |
|             return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_THEORA_DECODER
 | |
| static const enum AVPixelFormat theora_pix_fmts[4] = {
 | |
|     AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
 | |
| };
 | |
| 
 | |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int visible_width, visible_height, colorspace;
 | |
|     uint8_t offset_x = 0, offset_y = 0;
 | |
|     int ret;
 | |
|     AVRational fps, aspect;
 | |
| 
 | |
|     if (get_bits_left(gb) < 206)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     s->theora_header = 0;
 | |
|     s->theora = get_bits(gb, 24);
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
 | |
|     if (!s->theora) {
 | |
|         s->theora = 1;
 | |
|         avpriv_request_sample(s->avctx, "theora 0");
 | |
|     }
 | |
| 
 | |
|     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
 | |
|      * but previous versions have the image flipped relative to vp3 */
 | |
|     if (s->theora < 0x030200) {
 | |
|         s->flipped_image = 1;
 | |
|         av_log(avctx, AV_LOG_DEBUG,
 | |
|                "Old (<alpha3) Theora bitstream, flipped image\n");
 | |
|     }
 | |
| 
 | |
|     visible_width  =
 | |
|     s->width       = get_bits(gb, 16) << 4;
 | |
|     visible_height =
 | |
|     s->height      = get_bits(gb, 16) << 4;
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         visible_width  = get_bits(gb, 24);
 | |
|         visible_height = get_bits(gb, 24);
 | |
| 
 | |
|         offset_x = get_bits(gb, 8); /* offset x */
 | |
|         offset_y = get_bits(gb, 8); /* offset y, from bottom */
 | |
|     }
 | |
| 
 | |
|     /* sanity check */
 | |
|     if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
 | |
|         visible_width  + offset_x > s->width ||
 | |
|         visible_height + offset_y > s->height ||
 | |
|         visible_width < 18
 | |
|     ) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
 | |
|                visible_width, visible_height, offset_x, offset_y,
 | |
|                s->width, s->height);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     fps.num = get_bits_long(gb, 32);
 | |
|     fps.den = get_bits_long(gb, 32);
 | |
|     if (fps.num && fps.den) {
 | |
|         if (fps.num < 0 || fps.den < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         av_reduce(&avctx->framerate.den, &avctx->framerate.num,
 | |
|                   fps.den, fps.num, 1 << 30);
 | |
|     }
 | |
| 
 | |
|     aspect.num = get_bits(gb, 24);
 | |
|     aspect.den = get_bits(gb, 24);
 | |
|     if (aspect.num && aspect.den) {
 | |
|         av_reduce(&avctx->sample_aspect_ratio.num,
 | |
|                   &avctx->sample_aspect_ratio.den,
 | |
|                   aspect.num, aspect.den, 1 << 30);
 | |
|         ff_set_sar(avctx, avctx->sample_aspect_ratio);
 | |
|     }
 | |
| 
 | |
|     if (s->theora < 0x030200)
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|     colorspace = get_bits(gb, 8);
 | |
|     skip_bits(gb, 24); /* bitrate */
 | |
| 
 | |
|     skip_bits(gb, 6); /* quality hint */
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
 | |
|         if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         skip_bits(gb, 3); /* reserved */
 | |
|     } else
 | |
|         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | |
| 
 | |
|     if (s->width < 18)
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     ret = ff_set_dimensions(avctx, s->width, s->height);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
 | |
|         avctx->width  = visible_width;
 | |
|         avctx->height = visible_height;
 | |
|         // translate offsets from theora axis ([0,0] lower left)
 | |
|         // to normal axis ([0,0] upper left)
 | |
|         s->offset_x = offset_x;
 | |
|         s->offset_y = s->height - visible_height - offset_y;
 | |
|     }
 | |
| 
 | |
|     if (colorspace == 1)
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470M;
 | |
|     else if (colorspace == 2)
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470BG;
 | |
| 
 | |
|     if (colorspace == 1 || colorspace == 2) {
 | |
|         avctx->colorspace = AVCOL_SPC_BT470BG;
 | |
|         avctx->color_trc  = AVCOL_TRC_BT709;
 | |
|     }
 | |
| 
 | |
|     s->theora_header = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int n, matrices, ret;
 | |
| 
 | |
|     if (!s->theora_header)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         n = get_bits(gb, 3);
 | |
|         /* loop filter limit values table */
 | |
|         if (n)
 | |
|             for (int i = 0; i < 64; i++)
 | |
|                 s->filter_limit_values[i] = get_bits(gb, n);
 | |
|     }
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* quality threshold table */
 | |
|     for (int i = 0; i < 64; i++)
 | |
|         s->coded_ac_scale_factor[i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* dc scale factor table */
 | |
|     for (int i = 0; i < 64; i++)
 | |
|         s->coded_dc_scale_factor[0][i] =
 | |
|         s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         matrices = get_bits(gb, 9) + 1;
 | |
|     else
 | |
|         matrices = 3;
 | |
| 
 | |
|     if (matrices > 384) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (int j = 0; j < matrices; j++)
 | |
|         for (int i = 0; i < 64; i++)
 | |
|             s->base_matrix[j][i] = get_bits(gb, 8);
 | |
| 
 | |
|     for (int inter = 0; inter <= 1; inter++) {
 | |
|         for (int plane = 0; plane <= 2; plane++) {
 | |
|             int newqr = 1;
 | |
|             if (inter || plane > 0)
 | |
|                 newqr = get_bits1(gb);
 | |
|             if (!newqr) {
 | |
|                 int qtj, plj;
 | |
|                 if (inter && get_bits1(gb)) {
 | |
|                     qtj = 0;
 | |
|                     plj = plane;
 | |
|                 } else {
 | |
|                     qtj = (3 * inter + plane - 1) / 3;
 | |
|                     plj = (plane + 2) % 3;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane] = s->qr_count[qtj][plj];
 | |
|                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
 | |
|                        sizeof(s->qr_size[0][0]));
 | |
|                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
 | |
|                        sizeof(s->qr_base[0][0]));
 | |
|             } else {
 | |
|                 int qri = 0;
 | |
|                 int qi  = 0;
 | |
| 
 | |
|                 for (;;) {
 | |
|                     int i = get_bits(gb, av_log2(matrices - 1) + 1);
 | |
|                     if (i >= matrices) {
 | |
|                         av_log(avctx, AV_LOG_ERROR,
 | |
|                                "invalid base matrix index\n");
 | |
|                         return -1;
 | |
|                     }
 | |
|                     s->qr_base[inter][plane][qri] = i;
 | |
|                     if (qi >= 63)
 | |
|                         break;
 | |
|                     i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
 | |
|                     s->qr_size[inter][plane][qri++] = i;
 | |
|                     qi += i;
 | |
|                 }
 | |
| 
 | |
|                 if (qi > 63) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane] = qri;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Huffman tables */
 | |
|     for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) {
 | |
|         s->huffman_table[i].nb_entries = 0;
 | |
|         if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     s->theora_tables = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int theora_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int ptype;
 | |
|     const uint8_t *header_start[3];
 | |
|     int header_len[3];
 | |
|     int ret;
 | |
| 
 | |
|     avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | |
| 
 | |
|     s->theora = 1;
 | |
| 
 | |
|     if (!avctx->extradata_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
 | |
|                                   42, header_start, header_len) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|         if (header_len[i] <= 0)
 | |
|             continue;
 | |
|         ret = init_get_bits8(&gb, header_start[i], header_len[i]);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ptype = get_bits(&gb, 8);
 | |
| 
 | |
|         if (!(ptype & 0x80)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
 | |
| //          return -1;
 | |
|         }
 | |
| 
 | |
|         // FIXME: Check for this as well.
 | |
|         skip_bits_long(&gb, 6 * 8); /* "theora" */
 | |
| 
 | |
|         switch (ptype) {
 | |
|         case 0x80:
 | |
|             if (theora_decode_header(avctx, &gb) < 0)
 | |
|                 return -1;
 | |
|             break;
 | |
|         case 0x81:
 | |
| // FIXME: is this needed? it breaks sometimes
 | |
| //            theora_decode_comments(avctx, gb);
 | |
|             break;
 | |
|         case 0x82:
 | |
|             if (theora_decode_tables(avctx, &gb))
 | |
|                 return -1;
 | |
|             break;
 | |
|         default:
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "Unknown Theora config packet: %d\n", ptype & ~0x80);
 | |
|             break;
 | |
|         }
 | |
|         if (ptype != 0x81 && get_bits_left(&gb) >= 8U)
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "%d bits left in packet %X\n",
 | |
|                    get_bits_left(&gb), ptype);
 | |
|         if (s->theora < 0x030200)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return vp3_decode_init(avctx);
 | |
| }
 | |
| 
 | |
| const FFCodec ff_theora_decoder = {
 | |
|     .p.name                = "theora",
 | |
|     CODEC_LONG_NAME("Theora"),
 | |
|     .p.type                = AVMEDIA_TYPE_VIDEO,
 | |
|     .p.id                  = AV_CODEC_ID_THEORA,
 | |
|     .priv_data_size        = sizeof(Vp3DecodeContext),
 | |
|     .init                  = theora_decode_init,
 | |
|     .close                 = vp3_decode_end,
 | |
|     FF_CODEC_DECODE_CB(vp3_decode_frame),
 | |
|     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | |
|                              AV_CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = vp3_decode_flush,
 | |
|     UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
 | |
|                              FF_CODEC_CAP_EXPORTS_CROPPING |
 | |
|                              FF_CODEC_CAP_USES_PROGRESSFRAMES,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| const FFCodec ff_vp3_decoder = {
 | |
|     .p.name                = "vp3",
 | |
|     CODEC_LONG_NAME("On2 VP3"),
 | |
|     .p.type                = AVMEDIA_TYPE_VIDEO,
 | |
|     .p.id                  = AV_CODEC_ID_VP3,
 | |
|     .priv_data_size        = sizeof(Vp3DecodeContext),
 | |
|     .init                  = vp3_decode_init,
 | |
|     .close                 = vp3_decode_end,
 | |
|     FF_CODEC_DECODE_CB(vp3_decode_frame),
 | |
|     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | |
|                              AV_CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = vp3_decode_flush,
 | |
|     UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
 | |
|                              FF_CODEC_CAP_USES_PROGRESSFRAMES,
 | |
| };
 | |
| 
 | |
| #if CONFIG_VP4_DECODER
 | |
| const FFCodec ff_vp4_decoder = {
 | |
|     .p.name                = "vp4",
 | |
|     CODEC_LONG_NAME("On2 VP4"),
 | |
|     .p.type                = AVMEDIA_TYPE_VIDEO,
 | |
|     .p.id                  = AV_CODEC_ID_VP4,
 | |
|     .priv_data_size        = sizeof(Vp3DecodeContext),
 | |
|     .init                  = vp3_decode_init,
 | |
|     .close                 = vp3_decode_end,
 | |
|     FF_CODEC_DECODE_CB(vp3_decode_frame),
 | |
|     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | |
|                              AV_CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = vp3_decode_flush,
 | |
|     UPDATE_THREAD_CONTEXT(vp3_update_thread_context),
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_CLEANUP |
 | |
|                              FF_CODEC_CAP_USES_PROGRESSFRAMES,
 | |
| };
 | |
| #endif
 |