Add AVLPCType enum. Deprecate AVCodecContext.use_lpc. Originally committed as revision 24199 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			1312 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1312 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * FLAC audio encoder
 | 
						|
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/crc.h"
 | 
						|
#include "libavutil/md5.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "golomb.h"
 | 
						|
#include "lpc.h"
 | 
						|
#include "flac.h"
 | 
						|
#include "flacdata.h"
 | 
						|
 | 
						|
#define FLAC_SUBFRAME_CONSTANT  0
 | 
						|
#define FLAC_SUBFRAME_VERBATIM  1
 | 
						|
#define FLAC_SUBFRAME_FIXED     8
 | 
						|
#define FLAC_SUBFRAME_LPC      32
 | 
						|
 | 
						|
#define MAX_FIXED_ORDER     4
 | 
						|
#define MAX_PARTITION_ORDER 8
 | 
						|
#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | 
						|
#define MAX_LPC_PRECISION  15
 | 
						|
#define MAX_LPC_SHIFT      15
 | 
						|
#define MAX_RICE_PARAM     14
 | 
						|
 | 
						|
typedef struct CompressionOptions {
 | 
						|
    int compression_level;
 | 
						|
    int block_time_ms;
 | 
						|
    enum AVLPCType lpc_type;
 | 
						|
    int lpc_passes;
 | 
						|
    int lpc_coeff_precision;
 | 
						|
    int min_prediction_order;
 | 
						|
    int max_prediction_order;
 | 
						|
    int prediction_order_method;
 | 
						|
    int min_partition_order;
 | 
						|
    int max_partition_order;
 | 
						|
} CompressionOptions;
 | 
						|
 | 
						|
typedef struct RiceContext {
 | 
						|
    int porder;
 | 
						|
    int params[MAX_PARTITIONS];
 | 
						|
} RiceContext;
 | 
						|
 | 
						|
typedef struct FlacSubframe {
 | 
						|
    int type;
 | 
						|
    int type_code;
 | 
						|
    int obits;
 | 
						|
    int order;
 | 
						|
    int32_t coefs[MAX_LPC_ORDER];
 | 
						|
    int shift;
 | 
						|
    RiceContext rc;
 | 
						|
    int32_t samples[FLAC_MAX_BLOCKSIZE];
 | 
						|
    int32_t residual[FLAC_MAX_BLOCKSIZE+1];
 | 
						|
} FlacSubframe;
 | 
						|
 | 
						|
typedef struct FlacFrame {
 | 
						|
    FlacSubframe subframes[FLAC_MAX_CHANNELS];
 | 
						|
    int blocksize;
 | 
						|
    int bs_code[2];
 | 
						|
    uint8_t crc8;
 | 
						|
    int ch_mode;
 | 
						|
} FlacFrame;
 | 
						|
 | 
						|
typedef struct FlacEncodeContext {
 | 
						|
    PutBitContext pb;
 | 
						|
    int channels;
 | 
						|
    int samplerate;
 | 
						|
    int sr_code[2];
 | 
						|
    int max_blocksize;
 | 
						|
    int min_framesize;
 | 
						|
    int max_framesize;
 | 
						|
    int max_encoded_framesize;
 | 
						|
    uint32_t frame_count;
 | 
						|
    uint64_t sample_count;
 | 
						|
    uint8_t md5sum[16];
 | 
						|
    FlacFrame frame;
 | 
						|
    CompressionOptions options;
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    DSPContext dsp;
 | 
						|
    struct AVMD5 *md5ctx;
 | 
						|
} FlacEncodeContext;
 | 
						|
 | 
						|
/**
 | 
						|
 * Write streaminfo metadata block to byte array
 | 
						|
 */
 | 
						|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | 
						|
{
 | 
						|
    PutBitContext pb;
 | 
						|
 | 
						|
    memset(header, 0, FLAC_STREAMINFO_SIZE);
 | 
						|
    init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
 | 
						|
 | 
						|
    /* streaminfo metadata block */
 | 
						|
    put_bits(&pb, 16, s->max_blocksize);
 | 
						|
    put_bits(&pb, 16, s->max_blocksize);
 | 
						|
    put_bits(&pb, 24, s->min_framesize);
 | 
						|
    put_bits(&pb, 24, s->max_framesize);
 | 
						|
    put_bits(&pb, 20, s->samplerate);
 | 
						|
    put_bits(&pb, 3, s->channels-1);
 | 
						|
    put_bits(&pb, 5, 15);       /* bits per sample - 1 */
 | 
						|
    /* write 36-bit sample count in 2 put_bits() calls */
 | 
						|
    put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
 | 
						|
    put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
 | 
						|
    flush_put_bits(&pb);
 | 
						|
    memcpy(&header[18], s->md5sum, 16);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Set blocksize based on samplerate
 | 
						|
 * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
 | 
						|
 */
 | 
						|
static int select_blocksize(int samplerate, int block_time_ms)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int target;
 | 
						|
    int blocksize;
 | 
						|
 | 
						|
    assert(samplerate > 0);
 | 
						|
    blocksize = ff_flac_blocksize_table[1];
 | 
						|
    target = (samplerate * block_time_ms) / 1000;
 | 
						|
    for(i=0; i<16; i++) {
 | 
						|
        if(target >= ff_flac_blocksize_table[i] && ff_flac_blocksize_table[i] > blocksize) {
 | 
						|
            blocksize = ff_flac_blocksize_table[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return blocksize;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int flac_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int freq = avctx->sample_rate;
 | 
						|
    int channels = avctx->channels;
 | 
						|
    FlacEncodeContext *s = avctx->priv_data;
 | 
						|
    int i, level;
 | 
						|
    uint8_t *streaminfo;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    dsputil_init(&s->dsp, avctx);
 | 
						|
 | 
						|
    if(avctx->sample_fmt != SAMPLE_FMT_S16) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if(channels < 1 || channels > FLAC_MAX_CHANNELS) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    s->channels = channels;
 | 
						|
 | 
						|
    /* find samplerate in table */
 | 
						|
    if(freq < 1)
 | 
						|
        return -1;
 | 
						|
    for(i=4; i<12; i++) {
 | 
						|
        if(freq == ff_flac_sample_rate_table[i]) {
 | 
						|
            s->samplerate = ff_flac_sample_rate_table[i];
 | 
						|
            s->sr_code[0] = i;
 | 
						|
            s->sr_code[1] = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* if not in table, samplerate is non-standard */
 | 
						|
    if(i == 12) {
 | 
						|
        if(freq % 1000 == 0 && freq < 255000) {
 | 
						|
            s->sr_code[0] = 12;
 | 
						|
            s->sr_code[1] = freq / 1000;
 | 
						|
        } else if(freq % 10 == 0 && freq < 655350) {
 | 
						|
            s->sr_code[0] = 14;
 | 
						|
            s->sr_code[1] = freq / 10;
 | 
						|
        } else if(freq < 65535) {
 | 
						|
            s->sr_code[0] = 13;
 | 
						|
            s->sr_code[1] = freq;
 | 
						|
        } else {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->samplerate = freq;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set compression option defaults based on avctx->compression_level */
 | 
						|
    if(avctx->compression_level < 0) {
 | 
						|
        s->options.compression_level = 5;
 | 
						|
    } else {
 | 
						|
        s->options.compression_level = avctx->compression_level;
 | 
						|
    }
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
 | 
						|
 | 
						|
    level= s->options.compression_level;
 | 
						|
    if(level > 12) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | 
						|
               s->options.compression_level);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    s->options.block_time_ms       = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
 | 
						|
    s->options.lpc_type            = ((int[]){ AV_LPC_TYPE_FIXED,    AV_LPC_TYPE_FIXED,    AV_LPC_TYPE_FIXED,
 | 
						|
                                               AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
 | 
						|
                                               AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
 | 
						|
                                               AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
 | 
						|
                                               AV_LPC_TYPE_LEVINSON})[level];
 | 
						|
    s->options.min_prediction_order= ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | 
						|
    s->options.max_prediction_order= ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
 | 
						|
    s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | 
						|
                                                   ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | 
						|
                                                   ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
 | 
						|
                                                   ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
 | 
						|
                                                   ORDER_METHOD_SEARCH})[level];
 | 
						|
    s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
 | 
						|
    s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
 | 
						|
 | 
						|
    /* set compression option overrides from AVCodecContext */
 | 
						|
#if LIBAVCODEC_VERSION_MAJOR < 53
 | 
						|
    /* for compatibility with deprecated AVCodecContext.use_lpc */
 | 
						|
    if (avctx->use_lpc == 0) {
 | 
						|
        s->options.lpc_type = AV_LPC_TYPE_FIXED;
 | 
						|
    } else if (avctx->use_lpc == 1) {
 | 
						|
        s->options.lpc_type = AV_LPC_TYPE_LEVINSON;
 | 
						|
    } else if (avctx->use_lpc > 1) {
 | 
						|
        s->options.lpc_type   = AV_LPC_TYPE_CHOLESKY;
 | 
						|
        s->options.lpc_passes = avctx->use_lpc - 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (avctx->lpc_type > AV_LPC_TYPE_DEFAULT) {
 | 
						|
        if (avctx->lpc_type > AV_LPC_TYPE_CHOLESKY) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "unknown lpc type: %d\n", avctx->lpc_type);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.lpc_type = avctx->lpc_type;
 | 
						|
        if (s->options.lpc_type == AV_LPC_TYPE_CHOLESKY) {
 | 
						|
            if (avctx->lpc_passes < 0) {
 | 
						|
                // default number of passes for Cholesky
 | 
						|
                s->options.lpc_passes = 2;
 | 
						|
            } else if (avctx->lpc_passes == 0) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "invalid number of lpc passes: %d\n",
 | 
						|
                       avctx->lpc_passes);
 | 
						|
                return -1;
 | 
						|
            } else {
 | 
						|
                s->options.lpc_passes = avctx->lpc_passes;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    switch (s->options.lpc_type) {
 | 
						|
    case AV_LPC_TYPE_NONE:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
 | 
						|
        break;
 | 
						|
    case AV_LPC_TYPE_FIXED:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
 | 
						|
        break;
 | 
						|
    case AV_LPC_TYPE_LEVINSON:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
 | 
						|
        break;
 | 
						|
    case AV_LPC_TYPE_CHOLESKY:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
 | 
						|
               s->options.lpc_passes, s->options.lpc_passes==1?"":"es");
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
 | 
						|
        s->options.min_prediction_order = 0;
 | 
						|
    } else if (avctx->min_prediction_order >= 0) {
 | 
						|
        if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
 | 
						|
            if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
						|
                       avctx->min_prediction_order);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        } else if(avctx->min_prediction_order < MIN_LPC_ORDER ||
 | 
						|
                  avctx->min_prediction_order > MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
						|
                   avctx->min_prediction_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.min_prediction_order = avctx->min_prediction_order;
 | 
						|
    }
 | 
						|
    if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
 | 
						|
        s->options.max_prediction_order = 0;
 | 
						|
    } else if (avctx->max_prediction_order >= 0) {
 | 
						|
        if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
 | 
						|
            if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
						|
                       avctx->max_prediction_order);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
 | 
						|
                   avctx->max_prediction_order > MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
						|
                   avctx->max_prediction_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.max_prediction_order = avctx->max_prediction_order;
 | 
						|
    }
 | 
						|
    if(s->options.max_prediction_order < s->options.min_prediction_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | 
						|
               s->options.min_prediction_order, s->options.max_prediction_order);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | 
						|
           s->options.min_prediction_order, s->options.max_prediction_order);
 | 
						|
 | 
						|
    if(avctx->prediction_order_method >= 0) {
 | 
						|
        if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
 | 
						|
                   avctx->prediction_order_method);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.prediction_order_method = avctx->prediction_order_method;
 | 
						|
    }
 | 
						|
    switch(s->options.prediction_order_method) {
 | 
						|
        case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "estimate"); break;
 | 
						|
        case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "2-level"); break;
 | 
						|
        case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "4-level"); break;
 | 
						|
        case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "8-level"); break;
 | 
						|
        case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "full search"); break;
 | 
						|
        case ORDER_METHOD_LOG:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
						|
                                         "log search"); break;
 | 
						|
    }
 | 
						|
 | 
						|
    if(avctx->min_partition_order >= 0) {
 | 
						|
        if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
 | 
						|
                   avctx->min_partition_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.min_partition_order = avctx->min_partition_order;
 | 
						|
    }
 | 
						|
    if(avctx->max_partition_order >= 0) {
 | 
						|
        if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
 | 
						|
                   avctx->max_partition_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.max_partition_order = avctx->max_partition_order;
 | 
						|
    }
 | 
						|
    if(s->options.max_partition_order < s->options.min_partition_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | 
						|
               s->options.min_partition_order, s->options.max_partition_order);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | 
						|
           s->options.min_partition_order, s->options.max_partition_order);
 | 
						|
 | 
						|
    if(avctx->frame_size > 0) {
 | 
						|
        if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | 
						|
                avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | 
						|
                   avctx->frame_size);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
 | 
						|
    }
 | 
						|
    s->max_blocksize = s->avctx->frame_size;
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
 | 
						|
 | 
						|
    /* set LPC precision */
 | 
						|
    if(avctx->lpc_coeff_precision > 0) {
 | 
						|
        if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
 | 
						|
                   avctx->lpc_coeff_precision);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
 | 
						|
    } else {
 | 
						|
        /* default LPC precision */
 | 
						|
        s->options.lpc_coeff_precision = 15;
 | 
						|
    }
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | 
						|
           s->options.lpc_coeff_precision);
 | 
						|
 | 
						|
    /* set maximum encoded frame size in verbatim mode */
 | 
						|
    s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
 | 
						|
                                                  s->channels, 16);
 | 
						|
 | 
						|
    /* initialize MD5 context */
 | 
						|
    s->md5ctx = av_malloc(av_md5_size);
 | 
						|
    if(!s->md5ctx)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    av_md5_init(s->md5ctx);
 | 
						|
 | 
						|
    streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
 | 
						|
    write_streaminfo(s, streaminfo);
 | 
						|
    avctx->extradata = streaminfo;
 | 
						|
    avctx->extradata_size = FLAC_STREAMINFO_SIZE;
 | 
						|
 | 
						|
    s->frame_count = 0;
 | 
						|
    s->min_framesize = s->max_framesize;
 | 
						|
 | 
						|
    avctx->coded_frame = avcodec_alloc_frame();
 | 
						|
    avctx->coded_frame->key_frame = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void init_frame(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
    FlacFrame *frame;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
 | 
						|
    for(i=0; i<16; i++) {
 | 
						|
        if(s->avctx->frame_size == ff_flac_blocksize_table[i]) {
 | 
						|
            frame->blocksize = ff_flac_blocksize_table[i];
 | 
						|
            frame->bs_code[0] = i;
 | 
						|
            frame->bs_code[1] = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if(i == 16) {
 | 
						|
        frame->blocksize = s->avctx->frame_size;
 | 
						|
        if(frame->blocksize <= 256) {
 | 
						|
            frame->bs_code[0] = 6;
 | 
						|
            frame->bs_code[1] = frame->blocksize-1;
 | 
						|
        } else {
 | 
						|
            frame->bs_code[0] = 7;
 | 
						|
            frame->bs_code[1] = frame->blocksize-1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for(ch=0; ch<s->channels; ch++) {
 | 
						|
        frame->subframes[ch].obits = 16;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Copy channel-interleaved input samples into separate subframes
 | 
						|
 */
 | 
						|
static void copy_samples(FlacEncodeContext *s, int16_t *samples)
 | 
						|
{
 | 
						|
    int i, j, ch;
 | 
						|
    FlacFrame *frame;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
    for(i=0,j=0; i<frame->blocksize; i++) {
 | 
						|
        for(ch=0; ch<s->channels; ch++,j++) {
 | 
						|
            frame->subframes[ch].samples[i] = samples[j];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
 | 
						|
 | 
						|
/**
 | 
						|
 * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
 | 
						|
 */
 | 
						|
static int find_optimal_param(uint32_t sum, int n)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
    uint32_t sum2;
 | 
						|
 | 
						|
    if(sum <= n>>1)
 | 
						|
        return 0;
 | 
						|
    sum2 = sum-(n>>1);
 | 
						|
    k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
 | 
						|
    return FFMIN(k, MAX_RICE_PARAM);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | 
						|
                                         uint32_t *sums, int n, int pred_order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int k, cnt, part;
 | 
						|
    uint32_t all_bits;
 | 
						|
 | 
						|
    part = (1 << porder);
 | 
						|
    all_bits = 4 * part;
 | 
						|
 | 
						|
    cnt = (n >> porder) - pred_order;
 | 
						|
    for(i=0; i<part; i++) {
 | 
						|
        k = find_optimal_param(sums[i], cnt);
 | 
						|
        rc->params[i] = k;
 | 
						|
        all_bits += rice_encode_count(sums[i], cnt, k);
 | 
						|
        cnt = n >> porder;
 | 
						|
    }
 | 
						|
 | 
						|
    rc->porder = porder;
 | 
						|
 | 
						|
    return all_bits;
 | 
						|
}
 | 
						|
 | 
						|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
 | 
						|
                      uint32_t sums[][MAX_PARTITIONS])
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    int parts;
 | 
						|
    uint32_t *res, *res_end;
 | 
						|
 | 
						|
    /* sums for highest level */
 | 
						|
    parts = (1 << pmax);
 | 
						|
    res = &data[pred_order];
 | 
						|
    res_end = &data[n >> pmax];
 | 
						|
    for(i=0; i<parts; i++) {
 | 
						|
        uint32_t sum = 0;
 | 
						|
        while(res < res_end){
 | 
						|
            sum += *(res++);
 | 
						|
        }
 | 
						|
        sums[pmax][i] = sum;
 | 
						|
        res_end+= n >> pmax;
 | 
						|
    }
 | 
						|
    /* sums for lower levels */
 | 
						|
    for(i=pmax-1; i>=pmin; i--) {
 | 
						|
        parts = (1 << i);
 | 
						|
        for(j=0; j<parts; j++) {
 | 
						|
            sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
 | 
						|
                                 int32_t *data, int n, int pred_order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t bits[MAX_PARTITION_ORDER+1];
 | 
						|
    int opt_porder;
 | 
						|
    RiceContext tmp_rc;
 | 
						|
    uint32_t *udata;
 | 
						|
    uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
 | 
						|
 | 
						|
    assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | 
						|
    assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | 
						|
    assert(pmin <= pmax);
 | 
						|
 | 
						|
    udata = av_malloc(n * sizeof(uint32_t));
 | 
						|
    for(i=0; i<n; i++) {
 | 
						|
        udata[i] = (2*data[i]) ^ (data[i]>>31);
 | 
						|
    }
 | 
						|
 | 
						|
    calc_sums(pmin, pmax, udata, n, pred_order, sums);
 | 
						|
 | 
						|
    opt_porder = pmin;
 | 
						|
    bits[pmin] = UINT32_MAX;
 | 
						|
    for(i=pmin; i<=pmax; i++) {
 | 
						|
        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
 | 
						|
        if(bits[i] <= bits[opt_porder]) {
 | 
						|
            opt_porder = i;
 | 
						|
            *rc= tmp_rc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    av_freep(&udata);
 | 
						|
    return bits[opt_porder];
 | 
						|
}
 | 
						|
 | 
						|
static int get_max_p_order(int max_porder, int n, int order)
 | 
						|
{
 | 
						|
    int porder = FFMIN(max_porder, av_log2(n^(n-1)));
 | 
						|
    if(order > 0)
 | 
						|
        porder = FFMIN(porder, av_log2(n/order));
 | 
						|
    return porder;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
 | 
						|
                                       int32_t *data, int n, int pred_order,
 | 
						|
                                       int bps)
 | 
						|
{
 | 
						|
    uint32_t bits;
 | 
						|
    pmin = get_max_p_order(pmin, n, pred_order);
 | 
						|
    pmax = get_max_p_order(pmax, n, pred_order);
 | 
						|
    bits = pred_order*bps + 6;
 | 
						|
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
 | 
						|
                                     int32_t *data, int n, int pred_order,
 | 
						|
                                     int bps, int precision)
 | 
						|
{
 | 
						|
    uint32_t bits;
 | 
						|
    pmin = get_max_p_order(pmin, n, pred_order);
 | 
						|
    pmax = get_max_p_order(pmax, n, pred_order);
 | 
						|
    bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
 | 
						|
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
 | 
						|
{
 | 
						|
    assert(n > 0);
 | 
						|
    memcpy(res, smp, n * sizeof(int32_t));
 | 
						|
}
 | 
						|
 | 
						|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | 
						|
                                  int order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for(i=0; i<order; i++) {
 | 
						|
        res[i] = smp[i];
 | 
						|
    }
 | 
						|
 | 
						|
    if(order==0){
 | 
						|
        for(i=order; i<n; i++)
 | 
						|
            res[i]= smp[i];
 | 
						|
    }else if(order==1){
 | 
						|
        for(i=order; i<n; i++)
 | 
						|
            res[i]= smp[i] - smp[i-1];
 | 
						|
    }else if(order==2){
 | 
						|
        int a = smp[order-1] - smp[order-2];
 | 
						|
        for(i=order; i<n; i+=2) {
 | 
						|
            int b = smp[i] - smp[i-1];
 | 
						|
            res[i]= b - a;
 | 
						|
            a = smp[i+1] - smp[i];
 | 
						|
            res[i+1]= a - b;
 | 
						|
        }
 | 
						|
    }else if(order==3){
 | 
						|
        int a = smp[order-1] - smp[order-2];
 | 
						|
        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 | 
						|
        for(i=order; i<n; i+=2) {
 | 
						|
            int b = smp[i] - smp[i-1];
 | 
						|
            int d = b - a;
 | 
						|
            res[i]= d - c;
 | 
						|
            a = smp[i+1] - smp[i];
 | 
						|
            c = a - b;
 | 
						|
            res[i+1]= c - d;
 | 
						|
        }
 | 
						|
    }else{
 | 
						|
        int a = smp[order-1] - smp[order-2];
 | 
						|
        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 | 
						|
        int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 | 
						|
        for(i=order; i<n; i+=2) {
 | 
						|
            int b = smp[i] - smp[i-1];
 | 
						|
            int d = b - a;
 | 
						|
            int f = d - c;
 | 
						|
            res[i]= f - e;
 | 
						|
            a = smp[i+1] - smp[i];
 | 
						|
            c = a - b;
 | 
						|
            e = c - d;
 | 
						|
            res[i+1]= e - f;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define LPC1(x) {\
 | 
						|
    int c = coefs[(x)-1];\
 | 
						|
    p0 += c*s;\
 | 
						|
    s = smp[i-(x)+1];\
 | 
						|
    p1 += c*s;\
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline void encode_residual_lpc_unrolled(
 | 
						|
    int32_t *res, const int32_t *smp, int n,
 | 
						|
    int order, const int32_t *coefs, int shift, int big)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for(i=order; i<n; i+=2) {
 | 
						|
        int s = smp[i-order];
 | 
						|
        int p0 = 0, p1 = 0;
 | 
						|
        if(big) {
 | 
						|
            switch(order) {
 | 
						|
                case 32: LPC1(32)
 | 
						|
                case 31: LPC1(31)
 | 
						|
                case 30: LPC1(30)
 | 
						|
                case 29: LPC1(29)
 | 
						|
                case 28: LPC1(28)
 | 
						|
                case 27: LPC1(27)
 | 
						|
                case 26: LPC1(26)
 | 
						|
                case 25: LPC1(25)
 | 
						|
                case 24: LPC1(24)
 | 
						|
                case 23: LPC1(23)
 | 
						|
                case 22: LPC1(22)
 | 
						|
                case 21: LPC1(21)
 | 
						|
                case 20: LPC1(20)
 | 
						|
                case 19: LPC1(19)
 | 
						|
                case 18: LPC1(18)
 | 
						|
                case 17: LPC1(17)
 | 
						|
                case 16: LPC1(16)
 | 
						|
                case 15: LPC1(15)
 | 
						|
                case 14: LPC1(14)
 | 
						|
                case 13: LPC1(13)
 | 
						|
                case 12: LPC1(12)
 | 
						|
                case 11: LPC1(11)
 | 
						|
                case 10: LPC1(10)
 | 
						|
                case  9: LPC1( 9)
 | 
						|
                         LPC1( 8)
 | 
						|
                         LPC1( 7)
 | 
						|
                         LPC1( 6)
 | 
						|
                         LPC1( 5)
 | 
						|
                         LPC1( 4)
 | 
						|
                         LPC1( 3)
 | 
						|
                         LPC1( 2)
 | 
						|
                         LPC1( 1)
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            switch(order) {
 | 
						|
                case  8: LPC1( 8)
 | 
						|
                case  7: LPC1( 7)
 | 
						|
                case  6: LPC1( 6)
 | 
						|
                case  5: LPC1( 5)
 | 
						|
                case  4: LPC1( 4)
 | 
						|
                case  3: LPC1( 3)
 | 
						|
                case  2: LPC1( 2)
 | 
						|
                case  1: LPC1( 1)
 | 
						|
            }
 | 
						|
        }
 | 
						|
        res[i  ] = smp[i  ] - (p0 >> shift);
 | 
						|
        res[i+1] = smp[i+1] - (p1 >> shift);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
 | 
						|
                                int order, const int32_t *coefs, int shift)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for(i=0; i<order; i++) {
 | 
						|
        res[i] = smp[i];
 | 
						|
    }
 | 
						|
#if CONFIG_SMALL
 | 
						|
    for(i=order; i<n; i+=2) {
 | 
						|
        int j;
 | 
						|
        int s = smp[i];
 | 
						|
        int p0 = 0, p1 = 0;
 | 
						|
        for(j=0; j<order; j++) {
 | 
						|
            int c = coefs[j];
 | 
						|
            p1 += c*s;
 | 
						|
            s = smp[i-j-1];
 | 
						|
            p0 += c*s;
 | 
						|
        }
 | 
						|
        res[i  ] = smp[i  ] - (p0 >> shift);
 | 
						|
        res[i+1] = smp[i+1] - (p1 >> shift);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    switch(order) {
 | 
						|
        case  1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
 | 
						|
        case  2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
 | 
						|
        case  3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
 | 
						|
        case  4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
 | 
						|
        case  5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
 | 
						|
        case  6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
 | 
						|
        case  7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
 | 
						|
        case  8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
 | 
						|
        default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int encode_residual(FlacEncodeContext *ctx, int ch)
 | 
						|
{
 | 
						|
    int i, n;
 | 
						|
    int min_order, max_order, opt_order, precision, omethod;
 | 
						|
    int min_porder, max_porder;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
						|
    int shift[MAX_LPC_ORDER];
 | 
						|
    int32_t *res, *smp;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
    res = sub->residual;
 | 
						|
    smp = sub->samples;
 | 
						|
    n = frame->blocksize;
 | 
						|
 | 
						|
    /* CONSTANT */
 | 
						|
    for(i=1; i<n; i++) {
 | 
						|
        if(smp[i] != smp[0]) break;
 | 
						|
    }
 | 
						|
    if(i == n) {
 | 
						|
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | 
						|
        res[0] = smp[0];
 | 
						|
        return sub->obits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* VERBATIM */
 | 
						|
    if(n < 5) {
 | 
						|
        sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | 
						|
        encode_residual_verbatim(res, smp, n);
 | 
						|
        return sub->obits * n;
 | 
						|
    }
 | 
						|
 | 
						|
    min_order = ctx->options.min_prediction_order;
 | 
						|
    max_order = ctx->options.max_prediction_order;
 | 
						|
    min_porder = ctx->options.min_partition_order;
 | 
						|
    max_porder = ctx->options.max_partition_order;
 | 
						|
    precision = ctx->options.lpc_coeff_precision;
 | 
						|
    omethod = ctx->options.prediction_order_method;
 | 
						|
 | 
						|
    /* FIXED */
 | 
						|
    if (ctx->options.lpc_type == AV_LPC_TYPE_NONE  ||
 | 
						|
        ctx->options.lpc_type == AV_LPC_TYPE_FIXED || n <= max_order) {
 | 
						|
        uint32_t bits[MAX_FIXED_ORDER+1];
 | 
						|
        if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
 | 
						|
        opt_order = 0;
 | 
						|
        bits[0] = UINT32_MAX;
 | 
						|
        for(i=min_order; i<=max_order; i++) {
 | 
						|
            encode_residual_fixed(res, smp, n, i);
 | 
						|
            bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
 | 
						|
                                             n, i, sub->obits);
 | 
						|
            if(bits[i] < bits[opt_order]) {
 | 
						|
                opt_order = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        sub->order = opt_order;
 | 
						|
        sub->type = FLAC_SUBFRAME_FIXED;
 | 
						|
        sub->type_code = sub->type | sub->order;
 | 
						|
        if(sub->order != max_order) {
 | 
						|
            encode_residual_fixed(res, smp, n, sub->order);
 | 
						|
            return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
 | 
						|
                                          sub->order, sub->obits);
 | 
						|
        }
 | 
						|
        return bits[sub->order];
 | 
						|
    }
 | 
						|
 | 
						|
    /* LPC */
 | 
						|
    opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order,
 | 
						|
                                  precision, coefs, shift, ctx->options.lpc_type,
 | 
						|
                                  ctx->options.lpc_passes, omethod,
 | 
						|
                                  MAX_LPC_SHIFT, 0);
 | 
						|
 | 
						|
    if(omethod == ORDER_METHOD_2LEVEL ||
 | 
						|
       omethod == ORDER_METHOD_4LEVEL ||
 | 
						|
       omethod == ORDER_METHOD_8LEVEL) {
 | 
						|
        int levels = 1 << omethod;
 | 
						|
        uint32_t bits[1 << ORDER_METHOD_8LEVEL];
 | 
						|
        int order;
 | 
						|
        int opt_index = levels-1;
 | 
						|
        opt_order = max_order-1;
 | 
						|
        bits[opt_index] = UINT32_MAX;
 | 
						|
        for(i=levels-1; i>=0; i--) {
 | 
						|
            order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
 | 
						|
            if(order < 0) order = 0;
 | 
						|
            encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
 | 
						|
            bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | 
						|
                                           res, n, order+1, sub->obits, precision);
 | 
						|
            if(bits[i] < bits[opt_index]) {
 | 
						|
                opt_index = i;
 | 
						|
                opt_order = order;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    } else if(omethod == ORDER_METHOD_SEARCH) {
 | 
						|
        // brute-force optimal order search
 | 
						|
        uint32_t bits[MAX_LPC_ORDER];
 | 
						|
        opt_order = 0;
 | 
						|
        bits[0] = UINT32_MAX;
 | 
						|
        for(i=min_order-1; i<max_order; i++) {
 | 
						|
            encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | 
						|
            bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | 
						|
                                           res, n, i+1, sub->obits, precision);
 | 
						|
            if(bits[i] < bits[opt_order]) {
 | 
						|
                opt_order = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    } else if(omethod == ORDER_METHOD_LOG) {
 | 
						|
        uint32_t bits[MAX_LPC_ORDER];
 | 
						|
        int step;
 | 
						|
 | 
						|
        opt_order= min_order - 1 + (max_order-min_order)/3;
 | 
						|
        memset(bits, -1, sizeof(bits));
 | 
						|
 | 
						|
        for(step=16 ;step; step>>=1){
 | 
						|
            int last= opt_order;
 | 
						|
            for(i=last-step; i<=last+step; i+= step){
 | 
						|
                if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
 | 
						|
                    continue;
 | 
						|
                encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | 
						|
                bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | 
						|
                                            res, n, i+1, sub->obits, precision);
 | 
						|
                if(bits[i] < bits[opt_order])
 | 
						|
                    opt_order= i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    }
 | 
						|
 | 
						|
    sub->order = opt_order;
 | 
						|
    sub->type = FLAC_SUBFRAME_LPC;
 | 
						|
    sub->type_code = sub->type | (sub->order-1);
 | 
						|
    sub->shift = shift[sub->order-1];
 | 
						|
    for(i=0; i<sub->order; i++) {
 | 
						|
        sub->coefs[i] = coefs[sub->order-1][i];
 | 
						|
    }
 | 
						|
    encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
 | 
						|
    return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
 | 
						|
                                sub->obits, precision);
 | 
						|
}
 | 
						|
 | 
						|
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
 | 
						|
{
 | 
						|
    int i, n;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t *res, *smp;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
    res = sub->residual;
 | 
						|
    smp = sub->samples;
 | 
						|
    n = frame->blocksize;
 | 
						|
 | 
						|
    /* CONSTANT */
 | 
						|
    for(i=1; i<n; i++) {
 | 
						|
        if(smp[i] != smp[0]) break;
 | 
						|
    }
 | 
						|
    if(i == n) {
 | 
						|
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | 
						|
        res[0] = smp[0];
 | 
						|
        return sub->obits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* VERBATIM */
 | 
						|
    sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | 
						|
    encode_residual_verbatim(res, smp, n);
 | 
						|
    return sub->obits * n;
 | 
						|
}
 | 
						|
 | 
						|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
						|
{
 | 
						|
    int i, best;
 | 
						|
    int32_t lt, rt;
 | 
						|
    uint64_t sum[4];
 | 
						|
    uint64_t score[4];
 | 
						|
    int k;
 | 
						|
 | 
						|
    /* calculate sum of 2nd order residual for each channel */
 | 
						|
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | 
						|
    for(i=2; i<n; i++) {
 | 
						|
        lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
 | 
						|
        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | 
						|
        sum[2] += FFABS((lt + rt) >> 1);
 | 
						|
        sum[3] += FFABS(lt - rt);
 | 
						|
        sum[0] += FFABS(lt);
 | 
						|
        sum[1] += FFABS(rt);
 | 
						|
    }
 | 
						|
    /* estimate bit counts */
 | 
						|
    for(i=0; i<4; i++) {
 | 
						|
        k = find_optimal_param(2*sum[i], n);
 | 
						|
        sum[i] = rice_encode_count(2*sum[i], n, k);
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate score for each mode */
 | 
						|
    score[0] = sum[0] + sum[1];
 | 
						|
    score[1] = sum[0] + sum[3];
 | 
						|
    score[2] = sum[1] + sum[3];
 | 
						|
    score[3] = sum[2] + sum[3];
 | 
						|
 | 
						|
    /* return mode with lowest score */
 | 
						|
    best = 0;
 | 
						|
    for(i=1; i<4; i++) {
 | 
						|
        if(score[i] < score[best]) {
 | 
						|
            best = i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if(best == 0) {
 | 
						|
        return FLAC_CHMODE_INDEPENDENT;
 | 
						|
    } else if(best == 1) {
 | 
						|
        return FLAC_CHMODE_LEFT_SIDE;
 | 
						|
    } else if(best == 2) {
 | 
						|
        return FLAC_CHMODE_RIGHT_SIDE;
 | 
						|
    } else {
 | 
						|
        return FLAC_CHMODE_MID_SIDE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Perform stereo channel decorrelation
 | 
						|
 */
 | 
						|
static void channel_decorrelation(FlacEncodeContext *ctx)
 | 
						|
{
 | 
						|
    FlacFrame *frame;
 | 
						|
    int32_t *left, *right;
 | 
						|
    int i, n;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    n = frame->blocksize;
 | 
						|
    left  = frame->subframes[0].samples;
 | 
						|
    right = frame->subframes[1].samples;
 | 
						|
 | 
						|
    if(ctx->channels != 2) {
 | 
						|
        frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    frame->ch_mode = estimate_stereo_mode(left, right, n);
 | 
						|
 | 
						|
    /* perform decorrelation and adjust bits-per-sample */
 | 
						|
    if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | 
						|
        int32_t tmp;
 | 
						|
        for(i=0; i<n; i++) {
 | 
						|
            tmp = left[i];
 | 
						|
            left[i] = (tmp + right[i]) >> 1;
 | 
						|
            right[i] = tmp - right[i];
 | 
						|
        }
 | 
						|
        frame->subframes[1].obits++;
 | 
						|
    } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | 
						|
        for(i=0; i<n; i++) {
 | 
						|
            right[i] = left[i] - right[i];
 | 
						|
        }
 | 
						|
        frame->subframes[1].obits++;
 | 
						|
    } else {
 | 
						|
        for(i=0; i<n; i++) {
 | 
						|
            left[i] -= right[i];
 | 
						|
        }
 | 
						|
        frame->subframes[0].obits++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_utf8(PutBitContext *pb, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t tmp;
 | 
						|
    PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
 | 
						|
}
 | 
						|
 | 
						|
static void output_frame_header(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    FlacFrame *frame;
 | 
						|
    int crc;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
 | 
						|
    put_bits(&s->pb, 16, 0xFFF8);
 | 
						|
    put_bits(&s->pb, 4, frame->bs_code[0]);
 | 
						|
    put_bits(&s->pb, 4, s->sr_code[0]);
 | 
						|
    if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) {
 | 
						|
        put_bits(&s->pb, 4, s->channels-1);
 | 
						|
    } else {
 | 
						|
        put_bits(&s->pb, 4, frame->ch_mode);
 | 
						|
    }
 | 
						|
    put_bits(&s->pb, 3, 4); /* bits-per-sample code */
 | 
						|
    put_bits(&s->pb, 1, 0);
 | 
						|
    write_utf8(&s->pb, s->frame_count);
 | 
						|
    if(frame->bs_code[0] == 6) {
 | 
						|
        put_bits(&s->pb, 8, frame->bs_code[1]);
 | 
						|
    } else if(frame->bs_code[0] == 7) {
 | 
						|
        put_bits(&s->pb, 16, frame->bs_code[1]);
 | 
						|
    }
 | 
						|
    if(s->sr_code[0] == 12) {
 | 
						|
        put_bits(&s->pb, 8, s->sr_code[1]);
 | 
						|
    } else if(s->sr_code[0] > 12) {
 | 
						|
        put_bits(&s->pb, 16, s->sr_code[1]);
 | 
						|
    }
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
 | 
						|
                 s->pb.buf, put_bits_count(&s->pb)>>3);
 | 
						|
    put_bits(&s->pb, 8, crc);
 | 
						|
}
 | 
						|
 | 
						|
static void output_subframe_constant(FlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t res;
 | 
						|
 | 
						|
    sub = &s->frame.subframes[ch];
 | 
						|
    res = sub->residual[0];
 | 
						|
    put_sbits(&s->pb, sub->obits, res);
 | 
						|
}
 | 
						|
 | 
						|
static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t res;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
 | 
						|
    for(i=0; i<frame->blocksize; i++) {
 | 
						|
        res = sub->residual[i];
 | 
						|
        put_sbits(&s->pb, sub->obits, res);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void output_residual(FlacEncodeContext *ctx, int ch)
 | 
						|
{
 | 
						|
    int i, j, p, n, parts;
 | 
						|
    int k, porder, psize, res_cnt;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t *res;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
    res = sub->residual;
 | 
						|
    n = frame->blocksize;
 | 
						|
 | 
						|
    /* rice-encoded block */
 | 
						|
    put_bits(&ctx->pb, 2, 0);
 | 
						|
 | 
						|
    /* partition order */
 | 
						|
    porder = sub->rc.porder;
 | 
						|
    psize = n >> porder;
 | 
						|
    parts = (1 << porder);
 | 
						|
    put_bits(&ctx->pb, 4, porder);
 | 
						|
    res_cnt = psize - sub->order;
 | 
						|
 | 
						|
    /* residual */
 | 
						|
    j = sub->order;
 | 
						|
    for(p=0; p<parts; p++) {
 | 
						|
        k = sub->rc.params[p];
 | 
						|
        put_bits(&ctx->pb, 4, k);
 | 
						|
        if(p == 1) res_cnt = psize;
 | 
						|
        for(i=0; i<res_cnt && j<n; i++, j++) {
 | 
						|
            set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
 | 
						|
    /* warm-up samples */
 | 
						|
    for(i=0; i<sub->order; i++) {
 | 
						|
        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* residual */
 | 
						|
    output_residual(ctx, ch);
 | 
						|
}
 | 
						|
 | 
						|
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
 | 
						|
{
 | 
						|
    int i, cbits;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
 | 
						|
    frame = &ctx->frame;
 | 
						|
    sub = &frame->subframes[ch];
 | 
						|
 | 
						|
    /* warm-up samples */
 | 
						|
    for(i=0; i<sub->order; i++) {
 | 
						|
        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* LPC coefficients */
 | 
						|
    cbits = ctx->options.lpc_coeff_precision;
 | 
						|
    put_bits(&ctx->pb, 4, cbits-1);
 | 
						|
    put_sbits(&ctx->pb, 5, sub->shift);
 | 
						|
    for(i=0; i<sub->order; i++) {
 | 
						|
        put_sbits(&ctx->pb, cbits, sub->coefs[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* residual */
 | 
						|
    output_residual(ctx, ch);
 | 
						|
}
 | 
						|
 | 
						|
static void output_subframes(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int ch;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
 | 
						|
    for(ch=0; ch<s->channels; ch++) {
 | 
						|
        sub = &frame->subframes[ch];
 | 
						|
 | 
						|
        /* subframe header */
 | 
						|
        put_bits(&s->pb, 1, 0);
 | 
						|
        put_bits(&s->pb, 6, sub->type_code);
 | 
						|
        put_bits(&s->pb, 1, 0); /* no wasted bits */
 | 
						|
 | 
						|
        /* subframe */
 | 
						|
        if(sub->type == FLAC_SUBFRAME_CONSTANT) {
 | 
						|
            output_subframe_constant(s, ch);
 | 
						|
        } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
 | 
						|
            output_subframe_verbatim(s, ch);
 | 
						|
        } else if(sub->type == FLAC_SUBFRAME_FIXED) {
 | 
						|
            output_subframe_fixed(s, ch);
 | 
						|
        } else if(sub->type == FLAC_SUBFRAME_LPC) {
 | 
						|
            output_subframe_lpc(s, ch);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void output_frame_footer(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int crc;
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
 | 
						|
                          s->pb.buf, put_bits_count(&s->pb)>>3));
 | 
						|
    put_bits(&s->pb, 16, crc);
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
}
 | 
						|
 | 
						|
static void update_md5_sum(FlacEncodeContext *s, int16_t *samples)
 | 
						|
{
 | 
						|
#if HAVE_BIGENDIAN
 | 
						|
    int i;
 | 
						|
    for(i = 0; i < s->frame.blocksize*s->channels; i++) {
 | 
						|
        int16_t smp = av_le2ne16(samples[i]);
 | 
						|
        av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
 | 
						|
                             int buf_size, void *data)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
    FlacEncodeContext *s;
 | 
						|
    int16_t *samples = data;
 | 
						|
    int out_bytes;
 | 
						|
    int reencoded=0;
 | 
						|
 | 
						|
    s = avctx->priv_data;
 | 
						|
 | 
						|
    if(buf_size < s->max_framesize*2) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* when the last block is reached, update the header in extradata */
 | 
						|
    if (!data) {
 | 
						|
        s->max_framesize = s->max_encoded_framesize;
 | 
						|
        av_md5_final(s->md5ctx, s->md5sum);
 | 
						|
        write_streaminfo(s, avctx->extradata);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    init_frame(s);
 | 
						|
 | 
						|
    copy_samples(s, samples);
 | 
						|
 | 
						|
    channel_decorrelation(s);
 | 
						|
 | 
						|
    for(ch=0; ch<s->channels; ch++) {
 | 
						|
        encode_residual(s, ch);
 | 
						|
    }
 | 
						|
 | 
						|
write_frame:
 | 
						|
    init_put_bits(&s->pb, frame, buf_size);
 | 
						|
    output_frame_header(s);
 | 
						|
    output_subframes(s);
 | 
						|
    output_frame_footer(s);
 | 
						|
    out_bytes = put_bits_count(&s->pb) >> 3;
 | 
						|
 | 
						|
    if(out_bytes > s->max_framesize) {
 | 
						|
        if(reencoded) {
 | 
						|
            /* still too large. must be an error. */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* frame too large. use verbatim mode */
 | 
						|
        for(ch=0; ch<s->channels; ch++) {
 | 
						|
            encode_residual_v(s, ch);
 | 
						|
        }
 | 
						|
        reencoded = 1;
 | 
						|
        goto write_frame;
 | 
						|
    }
 | 
						|
 | 
						|
    s->frame_count++;
 | 
						|
    s->sample_count += avctx->frame_size;
 | 
						|
    update_md5_sum(s, samples);
 | 
						|
    if (out_bytes > s->max_encoded_framesize)
 | 
						|
        s->max_encoded_framesize = out_bytes;
 | 
						|
    if (out_bytes < s->min_framesize)
 | 
						|
        s->min_framesize = out_bytes;
 | 
						|
 | 
						|
    return out_bytes;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int flac_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    if (avctx->priv_data) {
 | 
						|
        FlacEncodeContext *s = avctx->priv_data;
 | 
						|
        av_freep(&s->md5ctx);
 | 
						|
    }
 | 
						|
    av_freep(&avctx->extradata);
 | 
						|
    avctx->extradata_size = 0;
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
AVCodec flac_encoder = {
 | 
						|
    "flac",
 | 
						|
    AVMEDIA_TYPE_AUDIO,
 | 
						|
    CODEC_ID_FLAC,
 | 
						|
    sizeof(FlacEncodeContext),
 | 
						|
    flac_encode_init,
 | 
						|
    flac_encode_frame,
 | 
						|
    flac_encode_close,
 | 
						|
    NULL,
 | 
						|
    .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
 | 
						|
    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
 | 
						|
};
 |