* qatar/master: (46 commits) mtv: Make sure audio_subsegments is not 0 v4l2: use V4L2_FMT_FLAG_EMULATED only if it is defined avconv: add symbolic names for -vsync parameters flvdec: Fix compiler warning for uninitialized variables rtsp: Fix compiler warning for uninitialized variable ulti: convert to new bytestream API. swscale: Use standard multiple inclusion guards in ppc/ header files. Place some START_TIMER invocations in separate blocks. v4l2: list available formats v4l2: set the proper codec_tag v4l2: refactor device_open v4l2: simplify away io_method v4l2: cosmetics v4l2: uniform and format options v4l2: do not force interlaced mode avio: exit early in fill_buffer without read_packet vc1dec: fix invalid memory access for small video dimensions rv34: fix invalid memory access for small video dimensions rv34: joint coefficient decoding and dequantization avplay: Don't call avio_set_interrupt_cb(NULL) ... Conflicts: Changelog avconv.c doc/APIchanges doc/indevs.texi libavcodec/adxenc.c libavcodec/dnxhdenc.c libavcodec/h264.c libavdevice/v4l2.c libavformat/flvdec.c libavformat/mtv.c libswscale/utils.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			633 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
@chapter Input Devices
 | 
						|
@c man begin INPUT DEVICES
 | 
						|
 | 
						|
Input devices are configured elements in FFmpeg which allow to access
 | 
						|
the data coming from a multimedia device attached to your system.
 | 
						|
 | 
						|
When you configure your FFmpeg build, all the supported input devices
 | 
						|
are enabled by default. You can list all available ones using the
 | 
						|
configure option "--list-indevs".
 | 
						|
 | 
						|
You can disable all the input devices using the configure option
 | 
						|
"--disable-indevs", and selectively enable an input device using the
 | 
						|
option "--enable-indev=@var{INDEV}", or you can disable a particular
 | 
						|
input device using the option "--disable-indev=@var{INDEV}".
 | 
						|
 | 
						|
The option "-formats" of the ff* tools will display the list of
 | 
						|
supported input devices (amongst the demuxers).
 | 
						|
 | 
						|
A description of the currently available input devices follows.
 | 
						|
 | 
						|
@section alsa
 | 
						|
 | 
						|
ALSA (Advanced Linux Sound Architecture) input device.
 | 
						|
 | 
						|
To enable this input device during configuration you need libasound
 | 
						|
installed on your system.
 | 
						|
 | 
						|
This device allows capturing from an ALSA device. The name of the
 | 
						|
device to capture has to be an ALSA card identifier.
 | 
						|
 | 
						|
An ALSA identifier has the syntax:
 | 
						|
@example
 | 
						|
hw:@var{CARD}[,@var{DEV}[,@var{SUBDEV}]]
 | 
						|
@end example
 | 
						|
 | 
						|
where the @var{DEV} and @var{SUBDEV} components are optional.
 | 
						|
 | 
						|
The three arguments (in order: @var{CARD},@var{DEV},@var{SUBDEV})
 | 
						|
specify card number or identifier, device number and subdevice number
 | 
						|
(-1 means any).
 | 
						|
 | 
						|
To see the list of cards currently recognized by your system check the
 | 
						|
files @file{/proc/asound/cards} and @file{/proc/asound/devices}.
 | 
						|
 | 
						|
For example to capture with @command{ffmpeg} from an ALSA device with
 | 
						|
card id 0, you may run the command:
 | 
						|
@example
 | 
						|
ffmpeg -f alsa -i hw:0 alsaout.wav
 | 
						|
@end example
 | 
						|
 | 
						|
For more information see:
 | 
						|
@url{http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html}
 | 
						|
 | 
						|
@section bktr
 | 
						|
 | 
						|
BSD video input device.
 | 
						|
 | 
						|
@section dshow
 | 
						|
 | 
						|
Windows DirectShow input device.
 | 
						|
 | 
						|
DirectShow support is enabled when FFmpeg is built with mingw-w64.
 | 
						|
Currently only audio and video devices are supported.
 | 
						|
 | 
						|
Multiple devices may be opened as separate inputs, but they may also be
 | 
						|
opened on the same input, which should improve synchronism between them.
 | 
						|
 | 
						|
The input name should be in the format:
 | 
						|
 | 
						|
@example
 | 
						|
@var{TYPE}=@var{NAME}[:@var{TYPE}=@var{NAME}]
 | 
						|
@end example
 | 
						|
 | 
						|
where @var{TYPE} can be either @var{audio} or @var{video},
 | 
						|
and @var{NAME} is the device's name.
 | 
						|
 | 
						|
@subsection Options
 | 
						|
 | 
						|
If no options are specified, the device's defaults are used.
 | 
						|
If the device does not support the requested options, it will
 | 
						|
fail to open.
 | 
						|
 | 
						|
@table @option
 | 
						|
 | 
						|
@item video_size
 | 
						|
Set the video size in the captured video.
 | 
						|
 | 
						|
@item framerate
 | 
						|
Set the framerate in the captured video.
 | 
						|
 | 
						|
@item sample_rate
 | 
						|
Set the sample rate (in Hz) of the captured audio.
 | 
						|
 | 
						|
@item sample_size
 | 
						|
Set the sample size (in bits) of the captured audio.
 | 
						|
 | 
						|
@item channels
 | 
						|
Set the number of channels in the captured audio.
 | 
						|
 | 
						|
@item list_devices
 | 
						|
If set to @option{true}, print a list of devices and exit.
 | 
						|
 | 
						|
@item list_options
 | 
						|
If set to @option{true}, print a list of selected device's options
 | 
						|
and exit.
 | 
						|
 | 
						|
@item video_device_number
 | 
						|
Set video device number for devices with same name (starts at 0,
 | 
						|
defaults to 0).
 | 
						|
 | 
						|
@item audio_device_number
 | 
						|
Set audio device number for devices with same name (starts at 0,
 | 
						|
defaults to 0).
 | 
						|
 | 
						|
@end table
 | 
						|
 | 
						|
@subsection Examples
 | 
						|
 | 
						|
@itemize
 | 
						|
 | 
						|
@item
 | 
						|
Print the list of DirectShow supported devices and exit:
 | 
						|
@example
 | 
						|
$ ffmpeg -list_devices true -f dshow -i dummy
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Open video device @var{Camera}:
 | 
						|
@example
 | 
						|
$ ffmpeg -f dshow -i video="Camera"
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Open second video device with name @var{Camera}:
 | 
						|
@example
 | 
						|
$ ffmpeg -f dshow -video_device_number 1 -i video="Camera"
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Open video device @var{Camera} and audio device @var{Microphone}:
 | 
						|
@example
 | 
						|
$ ffmpeg -f dshow -i video="Camera":audio="Microphone"
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Print the list of supported options in selected device and exit:
 | 
						|
@example
 | 
						|
$ ffmpeg -list_options true -f dshow -i video="Camera"
 | 
						|
@end example
 | 
						|
 | 
						|
@end itemize
 | 
						|
 | 
						|
@section dv1394
 | 
						|
 | 
						|
Linux DV 1394 input device.
 | 
						|
 | 
						|
@section fbdev
 | 
						|
 | 
						|
Linux framebuffer input device.
 | 
						|
 | 
						|
The Linux framebuffer is a graphic hardware-independent abstraction
 | 
						|
layer to show graphics on a computer monitor, typically on the
 | 
						|
console. It is accessed through a file device node, usually
 | 
						|
@file{/dev/fb0}.
 | 
						|
 | 
						|
For more detailed information read the file
 | 
						|
Documentation/fb/framebuffer.txt included in the Linux source tree.
 | 
						|
 | 
						|
To record from the framebuffer device @file{/dev/fb0} with
 | 
						|
@command{ffmpeg}:
 | 
						|
@example
 | 
						|
ffmpeg -f fbdev -r 10 -i /dev/fb0 out.avi
 | 
						|
@end example
 | 
						|
 | 
						|
You can take a single screenshot image with the command:
 | 
						|
@example
 | 
						|
ffmpeg -f fbdev -frames:v 1 -r 1 -i /dev/fb0 screenshot.jpeg
 | 
						|
@end example
 | 
						|
 | 
						|
See also @url{http://linux-fbdev.sourceforge.net/}, and fbset(1).
 | 
						|
 | 
						|
@section jack
 | 
						|
 | 
						|
JACK input device.
 | 
						|
 | 
						|
To enable this input device during configuration you need libjack
 | 
						|
installed on your system.
 | 
						|
 | 
						|
A JACK input device creates one or more JACK writable clients, one for
 | 
						|
each audio channel, with name @var{client_name}:input_@var{N}, where
 | 
						|
@var{client_name} is the name provided by the application, and @var{N}
 | 
						|
is a number which identifies the channel.
 | 
						|
Each writable client will send the acquired data to the FFmpeg input
 | 
						|
device.
 | 
						|
 | 
						|
Once you have created one or more JACK readable clients, you need to
 | 
						|
connect them to one or more JACK writable clients.
 | 
						|
 | 
						|
To connect or disconnect JACK clients you can use the @command{jack_connect}
 | 
						|
and @command{jack_disconnect} programs, or do it through a graphical interface,
 | 
						|
for example with @command{qjackctl}.
 | 
						|
 | 
						|
To list the JACK clients and their properties you can invoke the command
 | 
						|
@command{jack_lsp}.
 | 
						|
 | 
						|
Follows an example which shows how to capture a JACK readable client
 | 
						|
with @command{ffmpeg}.
 | 
						|
@example
 | 
						|
# Create a JACK writable client with name "ffmpeg".
 | 
						|
$ ffmpeg -f jack -i ffmpeg -y out.wav
 | 
						|
 | 
						|
# Start the sample jack_metro readable client.
 | 
						|
$ jack_metro -b 120 -d 0.2 -f 4000
 | 
						|
 | 
						|
# List the current JACK clients.
 | 
						|
$ jack_lsp -c
 | 
						|
system:capture_1
 | 
						|
system:capture_2
 | 
						|
system:playback_1
 | 
						|
system:playback_2
 | 
						|
ffmpeg:input_1
 | 
						|
metro:120_bpm
 | 
						|
 | 
						|
# Connect metro to the ffmpeg writable client.
 | 
						|
$ jack_connect metro:120_bpm ffmpeg:input_1
 | 
						|
@end example
 | 
						|
 | 
						|
For more information read:
 | 
						|
@url{http://jackaudio.org/}
 | 
						|
 | 
						|
@section lavfi
 | 
						|
 | 
						|
Libavfilter input virtual device.
 | 
						|
 | 
						|
This input device reads data from the open output pads of a libavfilter
 | 
						|
filtergraph.
 | 
						|
 | 
						|
For each filtergraph open output, the input device will create a
 | 
						|
corresponding stream which is mapped to the generated output. Currently
 | 
						|
only video data is supported. The filtergraph is specified through the
 | 
						|
option @option{graph}.
 | 
						|
 | 
						|
@subsection Options
 | 
						|
 | 
						|
@table @option
 | 
						|
 | 
						|
@item graph
 | 
						|
Specify the filtergraph to use as input. Each video open output must be
 | 
						|
labelled by a unique string of the form "out@var{N}", where @var{N} is a
 | 
						|
number starting from 0 corresponding to the mapped input stream
 | 
						|
generated by the device.
 | 
						|
The first unlabelled output is automatically assigned to the "out0"
 | 
						|
label, but all the others need to be specified explicitly.
 | 
						|
 | 
						|
If not specified defaults to the filename specified for the input
 | 
						|
device.
 | 
						|
@end table
 | 
						|
 | 
						|
@subsection Examples
 | 
						|
 | 
						|
@itemize
 | 
						|
@item
 | 
						|
Create a color video stream and play it back with @command{ffplay}:
 | 
						|
@example
 | 
						|
ffplay -f lavfi -graph "color=pink [out0]" dummy
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
As the previous example, but use filename for specifying the graph
 | 
						|
description, and omit the "out0" label:
 | 
						|
@example
 | 
						|
ffplay -f lavfi color=pink
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Create three different video test filtered sources and play them:
 | 
						|
@example
 | 
						|
ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Read an audio stream from a file using the amovie source and play it
 | 
						|
back with @command{ffplay}:
 | 
						|
@example
 | 
						|
ffplay -f lavfi "amovie=test.wav"
 | 
						|
@end example
 | 
						|
 | 
						|
@item
 | 
						|
Read an audio stream and a video stream and play it back with
 | 
						|
@command{ffplay}:
 | 
						|
@example
 | 
						|
ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"
 | 
						|
@end example
 | 
						|
 | 
						|
@end itemize
 | 
						|
 | 
						|
@section libdc1394
 | 
						|
 | 
						|
IIDC1394 input device, based on libdc1394 and libraw1394.
 | 
						|
 | 
						|
@section openal
 | 
						|
 | 
						|
The OpenAL input device provides audio capture on all systems with a
 | 
						|
working OpenAL 1.1 implementation.
 | 
						|
 | 
						|
To enable this input device during configuration, you need OpenAL
 | 
						|
headers and libraries installed on your system, and need to configure
 | 
						|
FFmpeg with @code{--enable-openal}.
 | 
						|
 | 
						|
OpenAL headers and libraries should be provided as part of your OpenAL
 | 
						|
implementation, or as an additional download (an SDK). Depending on your
 | 
						|
installation you may need to specify additional flags via the
 | 
						|
@code{--extra-cflags} and @code{--extra-ldflags} for allowing the build
 | 
						|
system to locate the OpenAL headers and libraries.
 | 
						|
 | 
						|
An incomplete list of OpenAL implementations follows:
 | 
						|
 | 
						|
@table @strong
 | 
						|
@item Creative
 | 
						|
The official Windows implementation, providing hardware acceleration
 | 
						|
with supported devices and software fallback.
 | 
						|
See @url{http://openal.org/}.
 | 
						|
@item OpenAL Soft
 | 
						|
Portable, open source (LGPL) software implementation. Includes
 | 
						|
backends for the most common sound APIs on the Windows, Linux,
 | 
						|
Solaris, and BSD operating systems.
 | 
						|
See @url{http://kcat.strangesoft.net/openal.html}.
 | 
						|
@item Apple
 | 
						|
OpenAL is part of Core Audio, the official Mac OS X Audio interface.
 | 
						|
See @url{http://developer.apple.com/technologies/mac/audio-and-video.html}
 | 
						|
@end table
 | 
						|
 | 
						|
This device allows to capture from an audio input device handled
 | 
						|
through OpenAL.
 | 
						|
 | 
						|
You need to specify the name of the device to capture in the provided
 | 
						|
filename. If the empty string is provided, the device will
 | 
						|
automatically select the default device. You can get the list of the
 | 
						|
supported devices by using the option @var{list_devices}.
 | 
						|
 | 
						|
@subsection Options
 | 
						|
 | 
						|
@table @option
 | 
						|
 | 
						|
@item channels
 | 
						|
Set the number of channels in the captured audio. Only the values
 | 
						|
@option{1} (monaural) and @option{2} (stereo) are currently supported.
 | 
						|
Defaults to @option{2}.
 | 
						|
 | 
						|
@item sample_size
 | 
						|
Set the sample size (in bits) of the captured audio. Only the values
 | 
						|
@option{8} and @option{16} are currently supported. Defaults to
 | 
						|
@option{16}.
 | 
						|
 | 
						|
@item sample_rate
 | 
						|
Set the sample rate (in Hz) of the captured audio.
 | 
						|
Defaults to @option{44.1k}.
 | 
						|
 | 
						|
@item list_devices
 | 
						|
If set to @option{true}, print a list of devices and exit.
 | 
						|
Defaults to @option{false}.
 | 
						|
 | 
						|
@end table
 | 
						|
 | 
						|
@subsection Examples
 | 
						|
 | 
						|
Print the list of OpenAL supported devices and exit:
 | 
						|
@example
 | 
						|
$ ffmpeg -list_devices true -f openal -i dummy out.ogg
 | 
						|
@end example
 | 
						|
 | 
						|
Capture from the OpenAL device @file{DR-BT101 via PulseAudio}:
 | 
						|
@example
 | 
						|
$ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out.ogg
 | 
						|
@end example
 | 
						|
 | 
						|
Capture from the default device (note the empty string '' as filename):
 | 
						|
@example
 | 
						|
$ ffmpeg -f openal -i '' out.ogg
 | 
						|
@end example
 | 
						|
 | 
						|
Capture from two devices simultaneously, writing to two different files,
 | 
						|
within the same @command{ffmpeg} command:
 | 
						|
@example
 | 
						|
$ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out1.ogg -f openal -i 'ALSA Default' out2.ogg
 | 
						|
@end example
 | 
						|
Note: not all OpenAL implementations support multiple simultaneous capture -
 | 
						|
try the latest OpenAL Soft if the above does not work.
 | 
						|
 | 
						|
@section oss
 | 
						|
 | 
						|
Open Sound System input device.
 | 
						|
 | 
						|
The filename to provide to the input device is the device node
 | 
						|
representing the OSS input device, and is usually set to
 | 
						|
@file{/dev/dsp}.
 | 
						|
 | 
						|
For example to grab from @file{/dev/dsp} using @command{ffmpeg} use the
 | 
						|
command:
 | 
						|
@example
 | 
						|
ffmpeg -f oss -i /dev/dsp /tmp/oss.wav
 | 
						|
@end example
 | 
						|
 | 
						|
For more information about OSS see:
 | 
						|
@url{http://manuals.opensound.com/usersguide/dsp.html}
 | 
						|
 | 
						|
@section pulse
 | 
						|
 | 
						|
pulseaudio input device.
 | 
						|
 | 
						|
To enable this input device during configuration you need libpulse-simple
 | 
						|
installed in your system.
 | 
						|
 | 
						|
The filename to provide to the input device is a source device or the
 | 
						|
string "default"
 | 
						|
 | 
						|
To list the pulse source devices and their properties you can invoke
 | 
						|
the command @command{pactl list sources}.
 | 
						|
 | 
						|
@example
 | 
						|
ffmpeg -f pulse -i default /tmp/pulse.wav
 | 
						|
@end example
 | 
						|
 | 
						|
@subsection @var{server} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-server @var{server name}
 | 
						|
@end example
 | 
						|
 | 
						|
Connects to a specific server.
 | 
						|
 | 
						|
@subsection @var{name} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-name @var{application name}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the application name pulse will use when showing active clients,
 | 
						|
by default it is the LIBAVFORMAT_IDENT string
 | 
						|
 | 
						|
@subsection @var{stream_name} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-stream_name @var{stream name}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the stream name pulse will use when showing active streams,
 | 
						|
by default it is "record"
 | 
						|
 | 
						|
@subsection @var{sample_rate} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-sample_rate @var{samplerate}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the samplerate in Hz, by default 48kHz is used.
 | 
						|
 | 
						|
@subsection @var{channels} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-channels @var{N}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the channels in use, by default 2 (stereo) is set.
 | 
						|
 | 
						|
@subsection @var{frame_size} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-frame_size @var{bytes}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the number of byte per frame, by default it is set to 1024.
 | 
						|
 | 
						|
@subsection @var{fragment_size} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-fragment_size @var{bytes}
 | 
						|
@end example
 | 
						|
 | 
						|
Specify the minimal buffering fragment in pulseaudio, it will affect the
 | 
						|
audio latency. By default it is unset.
 | 
						|
 | 
						|
@section sndio
 | 
						|
 | 
						|
sndio input device.
 | 
						|
 | 
						|
To enable this input device during configuration you need libsndio
 | 
						|
installed on your system.
 | 
						|
 | 
						|
The filename to provide to the input device is the device node
 | 
						|
representing the sndio input device, and is usually set to
 | 
						|
@file{/dev/audio0}.
 | 
						|
 | 
						|
For example to grab from @file{/dev/audio0} using @command{ffmpeg} use the
 | 
						|
command:
 | 
						|
@example
 | 
						|
ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav
 | 
						|
@end example
 | 
						|
 | 
						|
@section video4linux and video4linux2
 | 
						|
 | 
						|
Video4Linux and Video4Linux2 input video devices.
 | 
						|
 | 
						|
The name of the device to grab is a file device node, usually Linux
 | 
						|
systems tend to automatically create such nodes when the device
 | 
						|
(e.g. an USB webcam) is plugged into the system, and has a name of the
 | 
						|
kind @file{/dev/video@var{N}}, where @var{N} is a number associated to
 | 
						|
the device.
 | 
						|
 | 
						|
Video4Linux and Video4Linux2 devices only support a limited set of
 | 
						|
@var{width}x@var{height} sizes and framerates. You can check which are
 | 
						|
supported for example with the command @command{dov4l} for Video4Linux
 | 
						|
devices and using @command{-list_formats all} for Video4Linux2 devices.
 | 
						|
 | 
						|
If the size for the device is set to 0x0, the input device will
 | 
						|
try to auto-detect the size to use.
 | 
						|
Only for the video4linux2 device, if the frame rate is set to 0/0 the
 | 
						|
input device will use the frame rate value already set in the driver.
 | 
						|
 | 
						|
Video4Linux support is deprecated since Linux 2.6.30, and will be
 | 
						|
dropped in later versions.
 | 
						|
 | 
						|
Note that if FFmpeg is build with v4l-utils support ("--enable-libv4l2"
 | 
						|
option), it will always be used.
 | 
						|
 | 
						|
Follow some usage examples of the video4linux devices with the ff*
 | 
						|
tools.
 | 
						|
@example
 | 
						|
# Grab and show the input of a video4linux device, frame rate is set
 | 
						|
# to the default of 25/1.
 | 
						|
ffplay -s 320x240 -f video4linux /dev/video0
 | 
						|
 | 
						|
# Grab and show the input of a video4linux2 device, auto-adjust size.
 | 
						|
ffplay -f video4linux2 /dev/video0
 | 
						|
 | 
						|
# Grab and record the input of a video4linux2 device, auto-adjust size,
 | 
						|
# frame rate value defaults to 0/0 so it is read from the video4linux2
 | 
						|
# driver.
 | 
						|
ffmpeg -f video4linux2 -i /dev/video0 out.mpeg
 | 
						|
@end example
 | 
						|
 | 
						|
"v4l" and "v4l2" can be used as aliases for the respective "video4linux" and
 | 
						|
"video4linux2".
 | 
						|
 | 
						|
@section vfwcap
 | 
						|
 | 
						|
VfW (Video for Windows) capture input device.
 | 
						|
 | 
						|
The filename passed as input is the capture driver number, ranging from
 | 
						|
0 to 9. You may use "list" as filename to print a list of drivers. Any
 | 
						|
other filename will be interpreted as device number 0.
 | 
						|
 | 
						|
@section x11grab
 | 
						|
 | 
						|
X11 video input device.
 | 
						|
 | 
						|
This device allows to capture a region of an X11 display.
 | 
						|
 | 
						|
The filename passed as input has the syntax:
 | 
						|
@example
 | 
						|
[@var{hostname}]:@var{display_number}.@var{screen_number}[+@var{x_offset},@var{y_offset}]
 | 
						|
@end example
 | 
						|
 | 
						|
@var{hostname}:@var{display_number}.@var{screen_number} specifies the
 | 
						|
X11 display name of the screen to grab from. @var{hostname} can be
 | 
						|
omitted, and defaults to "localhost". The environment variable
 | 
						|
@env{DISPLAY} contains the default display name.
 | 
						|
 | 
						|
@var{x_offset} and @var{y_offset} specify the offsets of the grabbed
 | 
						|
area with respect to the top-left border of the X11 screen. They
 | 
						|
default to 0.
 | 
						|
 | 
						|
Check the X11 documentation (e.g. man X) for more detailed information.
 | 
						|
 | 
						|
Use the @command{dpyinfo} program for getting basic information about the
 | 
						|
properties of your X11 display (e.g. grep for "name" or "dimensions").
 | 
						|
 | 
						|
For example to grab from @file{:0.0} using @command{ffmpeg}:
 | 
						|
@example
 | 
						|
ffmpeg -f x11grab -r 25 -s cif -i :0.0 out.mpg
 | 
						|
 | 
						|
# Grab at position 10,20.
 | 
						|
ffmpeg -f x11grab -r 25 -s cif -i :0.0+10,20 out.mpg
 | 
						|
@end example
 | 
						|
 | 
						|
@subsection @var{follow_mouse} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-follow_mouse centered|@var{PIXELS}
 | 
						|
@end example
 | 
						|
 | 
						|
When it is specified with "centered", the grabbing region follows the mouse
 | 
						|
pointer and keeps the pointer at the center of region; otherwise, the region
 | 
						|
follows only when the mouse pointer reaches within @var{PIXELS} (greater than
 | 
						|
zero) to the edge of region.
 | 
						|
 | 
						|
For example:
 | 
						|
@example
 | 
						|
ffmpeg -f x11grab -follow_mouse centered -r 25 -s cif -i :0.0 out.mpg
 | 
						|
 | 
						|
# Follows only when the mouse pointer reaches within 100 pixels to edge
 | 
						|
ffmpeg -f x11grab -follow_mouse 100 -r 25 -s cif -i :0.0 out.mpg
 | 
						|
@end example
 | 
						|
 | 
						|
@subsection @var{show_region} AVOption
 | 
						|
 | 
						|
The syntax is:
 | 
						|
@example
 | 
						|
-show_region 1
 | 
						|
@end example
 | 
						|
 | 
						|
If @var{show_region} AVOption is specified with @var{1}, then the grabbing
 | 
						|
region will be indicated on screen. With this option, it's easy to know what is
 | 
						|
being grabbed if only a portion of the screen is grabbed.
 | 
						|
 | 
						|
For example:
 | 
						|
@example
 | 
						|
ffmpeg -f x11grab -show_region 1 -r 25 -s cif -i :0.0+10,20 out.mpg
 | 
						|
 | 
						|
# With follow_mouse
 | 
						|
ffmpeg -f x11grab -follow_mouse centered -show_region 1  -r 25 -s cif -i :0.0 out.mpg
 | 
						|
@end example
 | 
						|
 | 
						|
@c man end INPUT DEVICES
 |