* commit 'b2bed9325dbd6be0da1d91ffed3f513c40274fd2': cosmetics: Group .name and .long_name together in codec/format declarations Conflicts: libavcodec/8svx.c libavcodec/alac.c libavcodec/cljr.c libavcodec/dnxhddec.c libavcodec/dnxhdenc.c libavcodec/dpxenc.c libavcodec/dvdec.c libavcodec/dvdsubdec.c libavcodec/dvdsubenc.c libavcodec/ffv1dec.c libavcodec/flacdec.c libavcodec/flvdec.c libavcodec/fraps.c libavcodec/frwu.c libavcodec/g726.c libavcodec/gif.c libavcodec/gifdec.c libavcodec/h261dec.c libavcodec/h263dec.c libavcodec/iff.c libavcodec/imc.c libavcodec/libopencore-amr.c libavcodec/libopenjpegdec.c libavcodec/libopenjpegenc.c libavcodec/libspeexenc.c libavcodec/libvo-amrwbenc.c libavcodec/libvorbisenc.c libavcodec/libvpxenc.c libavcodec/libx264.c libavcodec/libxavs.c libavcodec/libxvid.c libavcodec/ljpegenc.c libavcodec/mjpegbdec.c libavcodec/mjpegdec.c libavcodec/mpeg12dec.c libavcodec/mpeg4videodec.c libavcodec/msmpeg4dec.c libavcodec/pgssubdec.c libavcodec/pngdec.c libavcodec/pngenc.c libavcodec/proresdec_lgpl.c libavcodec/proresenc_kostya.c libavcodec/ra144enc.c libavcodec/rawdec.c libavcodec/rv10.c libavcodec/sp5xdec.c libavcodec/takdec.c libavcodec/tta.c libavcodec/v210dec.c libavcodec/vp6.c libavcodec/wavpack.c libavcodec/xbmenc.c libavcodec/yop.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			650 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ALAC audio encoder
 | 
						|
 * Copyright (c) 2008  Jaikrishnan Menon <realityman@gmx.net>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "lpc.h"
 | 
						|
#include "mathops.h"
 | 
						|
#include "alac_data.h"
 | 
						|
 | 
						|
#define DEFAULT_FRAME_SIZE        4096
 | 
						|
#define ALAC_EXTRADATA_SIZE       36
 | 
						|
#define ALAC_FRAME_HEADER_SIZE    55
 | 
						|
#define ALAC_FRAME_FOOTER_SIZE    3
 | 
						|
 | 
						|
#define ALAC_ESCAPE_CODE          0x1FF
 | 
						|
#define ALAC_MAX_LPC_ORDER        30
 | 
						|
#define DEFAULT_MAX_PRED_ORDER    6
 | 
						|
#define DEFAULT_MIN_PRED_ORDER    4
 | 
						|
#define ALAC_MAX_LPC_PRECISION    9
 | 
						|
#define ALAC_MAX_LPC_SHIFT        9
 | 
						|
 | 
						|
#define ALAC_CHMODE_LEFT_RIGHT    0
 | 
						|
#define ALAC_CHMODE_LEFT_SIDE     1
 | 
						|
#define ALAC_CHMODE_RIGHT_SIDE    2
 | 
						|
#define ALAC_CHMODE_MID_SIDE      3
 | 
						|
 | 
						|
typedef struct RiceContext {
 | 
						|
    int history_mult;
 | 
						|
    int initial_history;
 | 
						|
    int k_modifier;
 | 
						|
    int rice_modifier;
 | 
						|
} RiceContext;
 | 
						|
 | 
						|
typedef struct AlacLPCContext {
 | 
						|
    int lpc_order;
 | 
						|
    int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
 | 
						|
    int lpc_quant;
 | 
						|
} AlacLPCContext;
 | 
						|
 | 
						|
typedef struct AlacEncodeContext {
 | 
						|
    int frame_size;                     /**< current frame size               */
 | 
						|
    int verbatim;                       /**< current frame verbatim mode flag */
 | 
						|
    int compression_level;
 | 
						|
    int min_prediction_order;
 | 
						|
    int max_prediction_order;
 | 
						|
    int max_coded_frame_size;
 | 
						|
    int write_sample_size;
 | 
						|
    int extra_bits;
 | 
						|
    int32_t sample_buf[2][DEFAULT_FRAME_SIZE];
 | 
						|
    int32_t predictor_buf[DEFAULT_FRAME_SIZE];
 | 
						|
    int interlacing_shift;
 | 
						|
    int interlacing_leftweight;
 | 
						|
    PutBitContext pbctx;
 | 
						|
    RiceContext rc;
 | 
						|
    AlacLPCContext lpc[2];
 | 
						|
    LPCContext lpc_ctx;
 | 
						|
    AVCodecContext *avctx;
 | 
						|
} AlacEncodeContext;
 | 
						|
 | 
						|
 | 
						|
static void init_sample_buffers(AlacEncodeContext *s, int channels,
 | 
						|
                                uint8_t const *samples[2])
 | 
						|
{
 | 
						|
    int ch, i;
 | 
						|
    int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
 | 
						|
                s->avctx->bits_per_raw_sample;
 | 
						|
 | 
						|
#define COPY_SAMPLES(type) do {                             \
 | 
						|
        for (ch = 0; ch < channels; ch++) {                 \
 | 
						|
            int32_t       *bptr = s->sample_buf[ch];        \
 | 
						|
            const type *sptr = (const type *)samples[ch];   \
 | 
						|
            for (i = 0; i < s->frame_size; i++)             \
 | 
						|
                bptr[i] = sptr[i] >> shift;                 \
 | 
						|
        }                                                   \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
    if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
 | 
						|
        COPY_SAMPLES(int32_t);
 | 
						|
    else
 | 
						|
        COPY_SAMPLES(int16_t);
 | 
						|
}
 | 
						|
 | 
						|
static void encode_scalar(AlacEncodeContext *s, int x,
 | 
						|
                          int k, int write_sample_size)
 | 
						|
{
 | 
						|
    int divisor, q, r;
 | 
						|
 | 
						|
    k = FFMIN(k, s->rc.k_modifier);
 | 
						|
    divisor = (1<<k) - 1;
 | 
						|
    q = x / divisor;
 | 
						|
    r = x % divisor;
 | 
						|
 | 
						|
    if (q > 8) {
 | 
						|
        // write escape code and sample value directly
 | 
						|
        put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
 | 
						|
        put_bits(&s->pbctx, write_sample_size, x);
 | 
						|
    } else {
 | 
						|
        if (q)
 | 
						|
            put_bits(&s->pbctx, q, (1<<q) - 1);
 | 
						|
        put_bits(&s->pbctx, 1, 0);
 | 
						|
 | 
						|
        if (k != 1) {
 | 
						|
            if (r > 0)
 | 
						|
                put_bits(&s->pbctx, k, r+1);
 | 
						|
            else
 | 
						|
                put_bits(&s->pbctx, k-1, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_element_header(AlacEncodeContext *s,
 | 
						|
                                 enum AlacRawDataBlockType element,
 | 
						|
                                 int instance)
 | 
						|
{
 | 
						|
    int encode_fs = 0;
 | 
						|
 | 
						|
    if (s->frame_size < DEFAULT_FRAME_SIZE)
 | 
						|
        encode_fs = 1;
 | 
						|
 | 
						|
    put_bits(&s->pbctx, 3,  element);               // element type
 | 
						|
    put_bits(&s->pbctx, 4,  instance);              // element instance
 | 
						|
    put_bits(&s->pbctx, 12, 0);                     // unused header bits
 | 
						|
    put_bits(&s->pbctx, 1,  encode_fs);             // Sample count is in the header
 | 
						|
    put_bits(&s->pbctx, 2,  s->extra_bits >> 3);    // Extra bytes (for 24-bit)
 | 
						|
    put_bits(&s->pbctx, 1,  s->verbatim);           // Audio block is verbatim
 | 
						|
    if (encode_fs)
 | 
						|
        put_bits32(&s->pbctx, s->frame_size);       // No. of samples in the frame
 | 
						|
}
 | 
						|
 | 
						|
static void calc_predictor_params(AlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
						|
    int shift[MAX_LPC_ORDER];
 | 
						|
    int opt_order;
 | 
						|
 | 
						|
    if (s->compression_level == 1) {
 | 
						|
        s->lpc[ch].lpc_order = 6;
 | 
						|
        s->lpc[ch].lpc_quant = 6;
 | 
						|
        s->lpc[ch].lpc_coeff[0] =  160;
 | 
						|
        s->lpc[ch].lpc_coeff[1] = -190;
 | 
						|
        s->lpc[ch].lpc_coeff[2] =  170;
 | 
						|
        s->lpc[ch].lpc_coeff[3] = -130;
 | 
						|
        s->lpc[ch].lpc_coeff[4] =   80;
 | 
						|
        s->lpc[ch].lpc_coeff[5] =  -25;
 | 
						|
    } else {
 | 
						|
        opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
 | 
						|
                                      s->frame_size,
 | 
						|
                                      s->min_prediction_order,
 | 
						|
                                      s->max_prediction_order,
 | 
						|
                                      ALAC_MAX_LPC_PRECISION, coefs, shift,
 | 
						|
                                      FF_LPC_TYPE_LEVINSON, 0,
 | 
						|
                                      ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
 | 
						|
 | 
						|
        s->lpc[ch].lpc_order = opt_order;
 | 
						|
        s->lpc[ch].lpc_quant = shift[opt_order-1];
 | 
						|
        memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
						|
{
 | 
						|
    int i, best;
 | 
						|
    int32_t lt, rt;
 | 
						|
    uint64_t sum[4];
 | 
						|
    uint64_t score[4];
 | 
						|
 | 
						|
    /* calculate sum of 2nd order residual for each channel */
 | 
						|
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | 
						|
    for (i = 2; i < n; i++) {
 | 
						|
        lt =  left_ch[i] - 2 *  left_ch[i - 1] +  left_ch[i - 2];
 | 
						|
        rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
 | 
						|
        sum[2] += FFABS((lt + rt) >> 1);
 | 
						|
        sum[3] += FFABS(lt - rt);
 | 
						|
        sum[0] += FFABS(lt);
 | 
						|
        sum[1] += FFABS(rt);
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate score for each mode */
 | 
						|
    score[0] = sum[0] + sum[1];
 | 
						|
    score[1] = sum[0] + sum[3];
 | 
						|
    score[2] = sum[1] + sum[3];
 | 
						|
    score[3] = sum[2] + sum[3];
 | 
						|
 | 
						|
    /* return mode with lowest score */
 | 
						|
    best = 0;
 | 
						|
    for (i = 1; i < 4; i++) {
 | 
						|
        if (score[i] < score[best])
 | 
						|
            best = i;
 | 
						|
    }
 | 
						|
    return best;
 | 
						|
}
 | 
						|
 | 
						|
static void alac_stereo_decorrelation(AlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
 | 
						|
    int i, mode, n = s->frame_size;
 | 
						|
    int32_t tmp;
 | 
						|
 | 
						|
    mode = estimate_stereo_mode(left, right, n);
 | 
						|
 | 
						|
    switch (mode) {
 | 
						|
    case ALAC_CHMODE_LEFT_RIGHT:
 | 
						|
        s->interlacing_leftweight = 0;
 | 
						|
        s->interlacing_shift      = 0;
 | 
						|
        break;
 | 
						|
    case ALAC_CHMODE_LEFT_SIDE:
 | 
						|
        for (i = 0; i < n; i++)
 | 
						|
            right[i] = left[i] - right[i];
 | 
						|
        s->interlacing_leftweight = 1;
 | 
						|
        s->interlacing_shift      = 0;
 | 
						|
        break;
 | 
						|
    case ALAC_CHMODE_RIGHT_SIDE:
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            tmp = right[i];
 | 
						|
            right[i] = left[i] - right[i];
 | 
						|
            left[i]  = tmp + (right[i] >> 31);
 | 
						|
        }
 | 
						|
        s->interlacing_leftweight = 1;
 | 
						|
        s->interlacing_shift      = 31;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            tmp = left[i];
 | 
						|
            left[i]  = (tmp + right[i]) >> 1;
 | 
						|
            right[i] =  tmp - right[i];
 | 
						|
        }
 | 
						|
        s->interlacing_leftweight = 1;
 | 
						|
        s->interlacing_shift      = 1;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    AlacLPCContext lpc = s->lpc[ch];
 | 
						|
 | 
						|
    if (lpc.lpc_order == 31) {
 | 
						|
        s->predictor_buf[0] = s->sample_buf[ch][0];
 | 
						|
 | 
						|
        for (i = 1; i < s->frame_size; i++) {
 | 
						|
            s->predictor_buf[i] = s->sample_buf[ch][i    ] -
 | 
						|
                                  s->sample_buf[ch][i - 1];
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // generalised linear predictor
 | 
						|
 | 
						|
    if (lpc.lpc_order > 0) {
 | 
						|
        int32_t *samples  = s->sample_buf[ch];
 | 
						|
        int32_t *residual = s->predictor_buf;
 | 
						|
 | 
						|
        // generate warm-up samples
 | 
						|
        residual[0] = samples[0];
 | 
						|
        for (i = 1; i <= lpc.lpc_order; i++)
 | 
						|
            residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
 | 
						|
 | 
						|
        // perform lpc on remaining samples
 | 
						|
        for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
 | 
						|
            int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
 | 
						|
 | 
						|
            for (j = 0; j < lpc.lpc_order; j++) {
 | 
						|
                sum += (samples[lpc.lpc_order-j] - samples[0]) *
 | 
						|
                       lpc.lpc_coeff[j];
 | 
						|
            }
 | 
						|
 | 
						|
            sum >>= lpc.lpc_quant;
 | 
						|
            sum += samples[0];
 | 
						|
            residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
 | 
						|
                                      s->write_sample_size);
 | 
						|
            res_val = residual[i];
 | 
						|
 | 
						|
            if (res_val) {
 | 
						|
                int index = lpc.lpc_order - 1;
 | 
						|
                int neg = (res_val < 0);
 | 
						|
 | 
						|
                while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
 | 
						|
                    int val  = samples[0] - samples[lpc.lpc_order - index];
 | 
						|
                    int sign = (val ? FFSIGN(val) : 0);
 | 
						|
 | 
						|
                    if (neg)
 | 
						|
                        sign *= -1;
 | 
						|
 | 
						|
                    lpc.lpc_coeff[index] -= sign;
 | 
						|
                    val *= sign;
 | 
						|
                    res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
 | 
						|
                    index--;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            samples++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void alac_entropy_coder(AlacEncodeContext *s)
 | 
						|
{
 | 
						|
    unsigned int history = s->rc.initial_history;
 | 
						|
    int sign_modifier = 0, i, k;
 | 
						|
    int32_t *samples = s->predictor_buf;
 | 
						|
 | 
						|
    for (i = 0; i < s->frame_size;) {
 | 
						|
        int x;
 | 
						|
 | 
						|
        k = av_log2((history >> 9) + 3);
 | 
						|
 | 
						|
        x  = -2 * (*samples) -1;
 | 
						|
        x ^= x >> 31;
 | 
						|
 | 
						|
        samples++;
 | 
						|
        i++;
 | 
						|
 | 
						|
        encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
 | 
						|
 | 
						|
        history += x * s->rc.history_mult -
 | 
						|
                   ((history * s->rc.history_mult) >> 9);
 | 
						|
 | 
						|
        sign_modifier = 0;
 | 
						|
        if (x > 0xFFFF)
 | 
						|
            history = 0xFFFF;
 | 
						|
 | 
						|
        if (history < 128 && i < s->frame_size) {
 | 
						|
            unsigned int block_size = 0;
 | 
						|
 | 
						|
            k = 7 - av_log2(history) + ((history + 16) >> 6);
 | 
						|
 | 
						|
            while (*samples == 0 && i < s->frame_size) {
 | 
						|
                samples++;
 | 
						|
                i++;
 | 
						|
                block_size++;
 | 
						|
            }
 | 
						|
            encode_scalar(s, block_size, k, 16);
 | 
						|
            sign_modifier = (block_size <= 0xFFFF);
 | 
						|
            history = 0;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_element(AlacEncodeContext *s,
 | 
						|
                          enum AlacRawDataBlockType element, int instance,
 | 
						|
                          const uint8_t *samples0, const uint8_t *samples1)
 | 
						|
{
 | 
						|
    uint8_t const *samples[2] = { samples0, samples1 };
 | 
						|
    int i, j, channels;
 | 
						|
    int prediction_type = 0;
 | 
						|
    PutBitContext *pb = &s->pbctx;
 | 
						|
 | 
						|
    channels = element == TYPE_CPE ? 2 : 1;
 | 
						|
 | 
						|
    if (s->verbatim) {
 | 
						|
        write_element_header(s, element, instance);
 | 
						|
        /* samples are channel-interleaved in verbatim mode */
 | 
						|
        if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
 | 
						|
            int shift = 32 - s->avctx->bits_per_raw_sample;
 | 
						|
            int32_t const *samples_s32[2] = { (const int32_t *)samples0,
 | 
						|
                                              (const int32_t *)samples1 };
 | 
						|
            for (i = 0; i < s->frame_size; i++)
 | 
						|
                for (j = 0; j < channels; j++)
 | 
						|
                    put_sbits(pb, s->avctx->bits_per_raw_sample,
 | 
						|
                              samples_s32[j][i] >> shift);
 | 
						|
        } else {
 | 
						|
            int16_t const *samples_s16[2] = { (const int16_t *)samples0,
 | 
						|
                                              (const int16_t *)samples1 };
 | 
						|
            for (i = 0; i < s->frame_size; i++)
 | 
						|
                for (j = 0; j < channels; j++)
 | 
						|
                    put_sbits(pb, s->avctx->bits_per_raw_sample,
 | 
						|
                              samples_s16[j][i]);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
 | 
						|
                               channels - 1;
 | 
						|
 | 
						|
        init_sample_buffers(s, channels, samples);
 | 
						|
        write_element_header(s, element, instance);
 | 
						|
 | 
						|
        if (channels == 2)
 | 
						|
            alac_stereo_decorrelation(s);
 | 
						|
        else
 | 
						|
            s->interlacing_shift = s->interlacing_leftweight = 0;
 | 
						|
        put_bits(pb, 8, s->interlacing_shift);
 | 
						|
        put_bits(pb, 8, s->interlacing_leftweight);
 | 
						|
 | 
						|
        for (i = 0; i < channels; i++) {
 | 
						|
            calc_predictor_params(s, i);
 | 
						|
 | 
						|
            put_bits(pb, 4, prediction_type);
 | 
						|
            put_bits(pb, 4, s->lpc[i].lpc_quant);
 | 
						|
 | 
						|
            put_bits(pb, 3, s->rc.rice_modifier);
 | 
						|
            put_bits(pb, 5, s->lpc[i].lpc_order);
 | 
						|
            // predictor coeff. table
 | 
						|
            for (j = 0; j < s->lpc[i].lpc_order; j++)
 | 
						|
                put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
 | 
						|
        }
 | 
						|
 | 
						|
        // write extra bits if needed
 | 
						|
        if (s->extra_bits) {
 | 
						|
            uint32_t mask = (1 << s->extra_bits) - 1;
 | 
						|
            for (i = 0; i < s->frame_size; i++) {
 | 
						|
                for (j = 0; j < channels; j++) {
 | 
						|
                    put_bits(pb, s->extra_bits, s->sample_buf[j][i] & mask);
 | 
						|
                    s->sample_buf[j][i] >>= s->extra_bits;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // apply lpc and entropy coding to audio samples
 | 
						|
        for (i = 0; i < channels; i++) {
 | 
						|
            alac_linear_predictor(s, i);
 | 
						|
 | 
						|
            // TODO: determine when this will actually help. for now it's not used.
 | 
						|
            if (prediction_type == 15) {
 | 
						|
                // 2nd pass 1st order filter
 | 
						|
                for (j = s->frame_size - 1; j > 0; j--)
 | 
						|
                    s->predictor_buf[j] -= s->predictor_buf[j - 1];
 | 
						|
            }
 | 
						|
            alac_entropy_coder(s);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
 | 
						|
                       uint8_t * const *samples)
 | 
						|
{
 | 
						|
    PutBitContext *pb = &s->pbctx;
 | 
						|
    const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1];
 | 
						|
    const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1];
 | 
						|
    int ch, element, sce, cpe;
 | 
						|
 | 
						|
    init_put_bits(pb, avpkt->data, avpkt->size);
 | 
						|
 | 
						|
    ch = element = sce = cpe = 0;
 | 
						|
    while (ch < s->avctx->channels) {
 | 
						|
        if (ch_elements[element] == TYPE_CPE) {
 | 
						|
            write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
 | 
						|
                          samples[ch_map[ch + 1]]);
 | 
						|
            cpe++;
 | 
						|
            ch += 2;
 | 
						|
        } else {
 | 
						|
            write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
 | 
						|
            sce++;
 | 
						|
            ch++;
 | 
						|
        }
 | 
						|
        element++;
 | 
						|
    }
 | 
						|
 | 
						|
    put_bits(pb, 3, TYPE_END);
 | 
						|
    flush_put_bits(pb);
 | 
						|
 | 
						|
    return put_bits_count(pb) >> 3;
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
 | 
						|
{
 | 
						|
    int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
 | 
						|
    return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int alac_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AlacEncodeContext *s = avctx->priv_data;
 | 
						|
    ff_lpc_end(&s->lpc_ctx);
 | 
						|
    av_freep(&avctx->extradata);
 | 
						|
    avctx->extradata_size = 0;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int alac_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AlacEncodeContext *s = avctx->priv_data;
 | 
						|
    int ret;
 | 
						|
    uint8_t *alac_extradata;
 | 
						|
 | 
						|
    avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
 | 
						|
 | 
						|
    if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
 | 
						|
        if (avctx->bits_per_raw_sample != 24)
 | 
						|
            av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
 | 
						|
        avctx->bits_per_raw_sample = 24;
 | 
						|
    } else {
 | 
						|
        avctx->bits_per_raw_sample = 16;
 | 
						|
        s->extra_bits              = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Set default compression level
 | 
						|
    if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
 | 
						|
        s->compression_level = 2;
 | 
						|
    else
 | 
						|
        s->compression_level = av_clip(avctx->compression_level, 0, 2);
 | 
						|
 | 
						|
    // Initialize default Rice parameters
 | 
						|
    s->rc.history_mult    = 40;
 | 
						|
    s->rc.initial_history = 10;
 | 
						|
    s->rc.k_modifier      = 14;
 | 
						|
    s->rc.rice_modifier   = 4;
 | 
						|
 | 
						|
    s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
 | 
						|
                                                 avctx->channels,
 | 
						|
                                                 avctx->bits_per_raw_sample);
 | 
						|
 | 
						|
    avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
 | 
						|
    if (!avctx->extradata) {
 | 
						|
        ret = AVERROR(ENOMEM);
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    avctx->extradata_size = ALAC_EXTRADATA_SIZE;
 | 
						|
 | 
						|
    alac_extradata = avctx->extradata;
 | 
						|
    AV_WB32(alac_extradata,    ALAC_EXTRADATA_SIZE);
 | 
						|
    AV_WB32(alac_extradata+4,  MKBETAG('a','l','a','c'));
 | 
						|
    AV_WB32(alac_extradata+12, avctx->frame_size);
 | 
						|
    AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
 | 
						|
    AV_WB8 (alac_extradata+21, avctx->channels);
 | 
						|
    AV_WB32(alac_extradata+24, s->max_coded_frame_size);
 | 
						|
    AV_WB32(alac_extradata+28,
 | 
						|
            avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate
 | 
						|
    AV_WB32(alac_extradata+32, avctx->sample_rate);
 | 
						|
 | 
						|
    // Set relevant extradata fields
 | 
						|
    if (s->compression_level > 0) {
 | 
						|
        AV_WB8(alac_extradata+18, s->rc.history_mult);
 | 
						|
        AV_WB8(alac_extradata+19, s->rc.initial_history);
 | 
						|
        AV_WB8(alac_extradata+20, s->rc.k_modifier);
 | 
						|
    }
 | 
						|
 | 
						|
    s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
 | 
						|
    if (avctx->min_prediction_order >= 0) {
 | 
						|
        if (avctx->min_prediction_order < MIN_LPC_ORDER ||
 | 
						|
           avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
						|
                   avctx->min_prediction_order);
 | 
						|
            ret = AVERROR(EINVAL);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        s->min_prediction_order = avctx->min_prediction_order;
 | 
						|
    }
 | 
						|
 | 
						|
    s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
 | 
						|
    if (avctx->max_prediction_order >= 0) {
 | 
						|
        if (avctx->max_prediction_order < MIN_LPC_ORDER ||
 | 
						|
            avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
						|
                   avctx->max_prediction_order);
 | 
						|
            ret = AVERROR(EINVAL);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        s->max_prediction_order = avctx->max_prediction_order;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->max_prediction_order < s->min_prediction_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR,
 | 
						|
               "invalid prediction orders: min=%d max=%d\n",
 | 
						|
               s->min_prediction_order, s->max_prediction_order);
 | 
						|
        ret = AVERROR(EINVAL);
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
 | 
						|
                           s->max_prediction_order,
 | 
						|
                           FF_LPC_TYPE_LEVINSON)) < 0) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
error:
 | 
						|
    alac_encode_close(avctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | 
						|
                             const AVFrame *frame, int *got_packet_ptr)
 | 
						|
{
 | 
						|
    AlacEncodeContext *s = avctx->priv_data;
 | 
						|
    int out_bytes, max_frame_size, ret;
 | 
						|
 | 
						|
    s->frame_size = frame->nb_samples;
 | 
						|
 | 
						|
    if (frame->nb_samples < DEFAULT_FRAME_SIZE)
 | 
						|
        max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
 | 
						|
                                            avctx->bits_per_raw_sample);
 | 
						|
    else
 | 
						|
        max_frame_size = s->max_coded_frame_size;
 | 
						|
 | 
						|
    if ((ret = ff_alloc_packet2(avctx, avpkt, 2 * max_frame_size)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    /* use verbatim mode for compression_level 0 */
 | 
						|
    if (s->compression_level) {
 | 
						|
        s->verbatim   = 0;
 | 
						|
        s->extra_bits = avctx->bits_per_raw_sample - 16;
 | 
						|
    } else {
 | 
						|
        s->verbatim   = 1;
 | 
						|
        s->extra_bits = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    out_bytes = write_frame(s, avpkt, frame->extended_data);
 | 
						|
 | 
						|
    if (out_bytes > max_frame_size) {
 | 
						|
        /* frame too large. use verbatim mode */
 | 
						|
        s->verbatim = 1;
 | 
						|
        s->extra_bits = 0;
 | 
						|
        out_bytes = write_frame(s, avpkt, frame->extended_data);
 | 
						|
    }
 | 
						|
 | 
						|
    avpkt->size = out_bytes;
 | 
						|
    *got_packet_ptr = 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
AVCodec ff_alac_encoder = {
 | 
						|
    .name           = "alac",
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_ALAC,
 | 
						|
    .priv_data_size = sizeof(AlacEncodeContext),
 | 
						|
    .init           = alac_encode_init,
 | 
						|
    .encode2        = alac_encode_frame,
 | 
						|
    .close          = alac_encode_close,
 | 
						|
    .capabilities   = CODEC_CAP_SMALL_LAST_FRAME,
 | 
						|
    .channel_layouts = ff_alac_channel_layouts,
 | 
						|
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
 | 
						|
                                                     AV_SAMPLE_FMT_S16P,
 | 
						|
                                                     AV_SAMPLE_FMT_NONE },
 | 
						|
};
 |