* commit '56d061ce9da954560892e3551513d5ecc0439846': metasound: add last missing modes (8kHz @ 6kbps per channel) Conflicts: Changelog doc/general.texi Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			804 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			804 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * TwinVQ decoder
 | |
|  * Copyright (c) 2009 Vitor Sessak
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "avcodec.h"
 | |
| #include "fft.h"
 | |
| #include "internal.h"
 | |
| #include "lsp.h"
 | |
| #include "sinewin.h"
 | |
| #include "twinvq.h"
 | |
| 
 | |
| /**
 | |
|  * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
 | |
|  * spectrum pairs.
 | |
|  *
 | |
|  * @param lsp a vector of the cosine of the LSP values
 | |
|  * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
 | |
|  * @param order the order of the LSP (and the size of the *lsp buffer). Must
 | |
|  *        be a multiple of four.
 | |
|  * @return the LPC value
 | |
|  *
 | |
|  * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
 | |
|  */
 | |
| static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
 | |
| {
 | |
|     int j;
 | |
|     float p         = 0.5f;
 | |
|     float q         = 0.5f;
 | |
|     float two_cos_w = 2.0f * cos_val;
 | |
| 
 | |
|     for (j = 0; j + 1 < order; j += 2 * 2) {
 | |
|         // Unroll the loop once since order is a multiple of four
 | |
|         q *= lsp[j]     - two_cos_w;
 | |
|         p *= lsp[j + 1] - two_cos_w;
 | |
| 
 | |
|         q *= lsp[j + 2] - two_cos_w;
 | |
|         p *= lsp[j + 3] - two_cos_w;
 | |
|     }
 | |
| 
 | |
|     p *= p * (2.0f - two_cos_w);
 | |
|     q *= q * (2.0f + two_cos_w);
 | |
| 
 | |
|     return 0.5 / (p + q);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
 | |
|  */
 | |
| static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
 | |
| {
 | |
|     int i;
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
 | |
| 
 | |
|     for (i = 0; i < size_s / 2; i++) {
 | |
|         float cos_i = tctx->cos_tabs[0][i];
 | |
|         lpc[i]              = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
 | |
|         lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void interpolate(float *out, float v1, float v2, int size)
 | |
| {
 | |
|     int i;
 | |
|     float step = (v1 - v2) / (size + 1);
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         v2    += step;
 | |
|         out[i] = v2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline float get_cos(int idx, int part, const float *cos_tab, int size)
 | |
| {
 | |
|     return part ? -cos_tab[size - idx - 1]
 | |
|                 :  cos_tab[idx];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
 | |
|  * Probably for speed reasons, the coefficients are evaluated as
 | |
|  * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
 | |
|  * where s is an evaluated value, i is a value interpolated from the others
 | |
|  * and b might be either calculated or interpolated, depending on an
 | |
|  * unexplained condition.
 | |
|  *
 | |
|  * @param step the size of a block "siiiibiiii"
 | |
|  * @param in the cosine of the LSP data
 | |
|  * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
 | |
|  *        (negative cosine values)
 | |
|  * @param size the size of the whole output
 | |
|  */
 | |
| static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
 | |
|                                          enum TwinVQFrameType ftype,
 | |
|                                          float *out, const float *in,
 | |
|                                          int size, int step, int part)
 | |
| {
 | |
|     int i;
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     const float *cos_tab      = tctx->cos_tabs[ftype];
 | |
| 
 | |
|     // Fill the 's'
 | |
|     for (i = 0; i < size; i += step)
 | |
|         out[i] =
 | |
|             eval_lpc_spectrum(in,
 | |
|                               get_cos(i, part, cos_tab, size),
 | |
|                               mtab->n_lsp);
 | |
| 
 | |
|     // Fill the 'iiiibiiii'
 | |
|     for (i = step; i <= size - 2 * step; i += step) {
 | |
|         if (out[i + step] + out[i - step] > 1.95 * out[i] ||
 | |
|             out[i + step]                 >= out[i - step]) {
 | |
|             interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
 | |
|         } else {
 | |
|             out[i - step / 2] =
 | |
|                 eval_lpc_spectrum(in,
 | |
|                                   get_cos(i - step / 2, part, cos_tab, size),
 | |
|                                   mtab->n_lsp);
 | |
|             interpolate(out + i - step + 1, out[i - step / 2],
 | |
|                         out[i - step], step / 2 - 1);
 | |
|             interpolate(out + i - step / 2 + 1, out[i],
 | |
|                         out[i - step / 2], step / 2 - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     interpolate(out + size - 2 * step + 1, out[size - step],
 | |
|                 out[size - 2 * step], step - 1);
 | |
| }
 | |
| 
 | |
| static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
 | |
|                                const float *buf, float *lpc,
 | |
|                                int size, int step)
 | |
| {
 | |
|     eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
 | |
|     eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
 | |
|                           2 * step, 1);
 | |
| 
 | |
|     interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
 | |
|                 lpc[size / 2 - step], step);
 | |
| 
 | |
|     twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
 | |
|                         2 * step - 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
 | |
|  * bitstream, sum the corresponding vectors and write the result to *out
 | |
|  * after permutation.
 | |
|  */
 | |
| static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
 | |
|                     enum TwinVQFrameType ftype,
 | |
|                     const int16_t *cb0, const int16_t *cb1, int cb_len)
 | |
| {
 | |
|     int pos = 0;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < tctx->n_div[ftype]; i++) {
 | |
|         int tmp0, tmp1;
 | |
|         int sign0 = 1;
 | |
|         int sign1 = 1;
 | |
|         const int16_t *tab0, *tab1;
 | |
|         int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
 | |
|         int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
 | |
| 
 | |
|         int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
 | |
|         tmp0 = *cb_bits++;
 | |
|         if (bits == 7) {
 | |
|             if (tmp0 & 0x40)
 | |
|                 sign0 = -1;
 | |
|             tmp0 &= 0x3F;
 | |
|         }
 | |
| 
 | |
|         bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
 | |
|         tmp1 = *cb_bits++;
 | |
|         if (bits == 7) {
 | |
|             if (tmp1 & 0x40)
 | |
|                 sign1 = -1;
 | |
|             tmp1 &= 0x3F;
 | |
|         }
 | |
| 
 | |
|         tab0 = cb0 + tmp0 * cb_len;
 | |
|         tab1 = cb1 + tmp1 * cb_len;
 | |
| 
 | |
|         for (j = 0; j < length; j++)
 | |
|             out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
 | |
|                                                 sign1 * tab1[j];
 | |
| 
 | |
|         pos += length;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dec_gain(TwinVQContext *tctx,
 | |
|                      enum TwinVQFrameType ftype, float *out)
 | |
| {
 | |
|     const TwinVQModeTab   *mtab =  tctx->mtab;
 | |
|     const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
 | |
|     int i, j;
 | |
|     int sub        = mtab->fmode[ftype].sub;
 | |
|     float step     = TWINVQ_AMP_MAX     / ((1 << TWINVQ_GAIN_BITS)     - 1);
 | |
|     float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
 | |
| 
 | |
|     if (ftype == TWINVQ_FT_LONG) {
 | |
|         for (i = 0; i < tctx->avctx->channels; i++)
 | |
|             out[i] = (1.0 / (1 << 13)) *
 | |
|                      twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
 | |
|                                      TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
 | |
|     } else {
 | |
|         for (i = 0; i < tctx->avctx->channels; i++) {
 | |
|             float val = (1.0 / (1 << 23)) *
 | |
|                         twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
 | |
|                                         TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
 | |
| 
 | |
|             for (j = 0; j < sub; j++)
 | |
|                 out[i * sub + j] =
 | |
|                     val * twinvq_mulawinv(sub_step * 0.5 +
 | |
|                                           sub_step * bits->sub_gain_bits[i * sub + j],
 | |
|                                           TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Rearrange the LSP coefficients so that they have a minimum distance of
 | |
|  * min_dist. This function does it exactly as described in section of 3.2.4
 | |
|  * of the G.729 specification (but interestingly is different from what the
 | |
|  * reference decoder actually does).
 | |
|  */
 | |
| static void rearrange_lsp(int order, float *lsp, float min_dist)
 | |
| {
 | |
|     int i;
 | |
|     float min_dist2 = min_dist * 0.5;
 | |
|     for (i = 1; i < order; i++)
 | |
|         if (lsp[i] - lsp[i - 1] < min_dist) {
 | |
|             float avg = (lsp[i] + lsp[i - 1]) * 0.5;
 | |
| 
 | |
|             lsp[i - 1] = avg - min_dist2;
 | |
|             lsp[i]     = avg + min_dist2;
 | |
|         }
 | |
| }
 | |
| 
 | |
| static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
 | |
|                        int lpc_hist_idx, float *lsp, float *hist)
 | |
| {
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int i, j;
 | |
| 
 | |
|     const float *cb  = mtab->lspcodebook;
 | |
|     const float *cb2 = cb  + (1 << mtab->lsp_bit1) * mtab->n_lsp;
 | |
|     const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
 | |
| 
 | |
|     const int8_t funny_rounding[4] = {
 | |
|         -2,
 | |
|         mtab->lsp_split == 4 ? -2 : 1,
 | |
|         mtab->lsp_split == 4 ? -2 : 1,
 | |
|         0
 | |
|     };
 | |
| 
 | |
|     j = 0;
 | |
|     for (i = 0; i < mtab->lsp_split; i++) {
 | |
|         int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
 | |
|                         mtab->lsp_split;
 | |
|         for (; j < chunk_end; j++)
 | |
|             lsp[j] = cb[lpc_idx1     * mtab->n_lsp + j] +
 | |
|                      cb2[lpc_idx2[i] * mtab->n_lsp + j];
 | |
|     }
 | |
| 
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
 | |
| 
 | |
|     for (i = 0; i < mtab->n_lsp; i++) {
 | |
|         float tmp1 = 1.0     - cb3[lpc_hist_idx * mtab->n_lsp + i];
 | |
|         float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
 | |
|         hist[i] = lsp[i];
 | |
|         lsp[i]  = lsp[i] * tmp1 + tmp2;
 | |
|     }
 | |
| 
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
 | |
|     ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
 | |
| }
 | |
| 
 | |
| static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
 | |
|                                  enum TwinVQFrameType ftype, float *lpc)
 | |
| {
 | |
|     int i;
 | |
|     int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
 | |
| 
 | |
|     for (i = 0; i < tctx->mtab->n_lsp; i++)
 | |
|         lsp[i] = 2 * cos(lsp[i]);
 | |
| 
 | |
|     switch (ftype) {
 | |
|     case TWINVQ_FT_LONG:
 | |
|         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
 | |
|         break;
 | |
|     case TWINVQ_FT_MEDIUM:
 | |
|         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
 | |
|         break;
 | |
|     case TWINVQ_FT_SHORT:
 | |
|         eval_lpcenv(tctx, lsp, lpc);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
 | |
| 
 | |
| static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
 | |
|                              int wtype, float *in, float *prev, int ch)
 | |
| {
 | |
|     FFTContext *mdct = &tctx->mdct_ctx[ftype];
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int bsize = mtab->size / mtab->fmode[ftype].sub;
 | |
|     int size  = mtab->size;
 | |
|     float *buf1 = tctx->tmp_buf;
 | |
|     int j, first_wsize, wsize; // Window size
 | |
|     float *out  = tctx->curr_frame + 2 * ch * mtab->size;
 | |
|     float *out2 = out;
 | |
|     float *prev_buf;
 | |
|     int types_sizes[] = {
 | |
|         mtab->size /  mtab->fmode[TWINVQ_FT_LONG].sub,
 | |
|         mtab->size /  mtab->fmode[TWINVQ_FT_MEDIUM].sub,
 | |
|         mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
 | |
|     };
 | |
| 
 | |
|     wsize       = types_sizes[wtype_to_wsize[wtype]];
 | |
|     first_wsize = wsize;
 | |
|     prev_buf    = prev + (size - bsize) / 2;
 | |
| 
 | |
|     for (j = 0; j < mtab->fmode[ftype].sub; j++) {
 | |
|         int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
 | |
| 
 | |
|         if (!j && wtype == 4)
 | |
|             sub_wtype = 4;
 | |
|         else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
 | |
|             sub_wtype = 7;
 | |
| 
 | |
|         wsize = types_sizes[wtype_to_wsize[sub_wtype]];
 | |
| 
 | |
|         mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
 | |
| 
 | |
|         tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
 | |
|                                       buf1 + bsize * j,
 | |
|                                       ff_sine_windows[av_log2(wsize)],
 | |
|                                       wsize / 2);
 | |
|         out2 += wsize;
 | |
| 
 | |
|         memcpy(out2, buf1 + bsize * j + wsize / 2,
 | |
|                (bsize - wsize / 2) * sizeof(float));
 | |
| 
 | |
|         out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
 | |
| 
 | |
|         prev_buf = buf1 + bsize * j + bsize / 2;
 | |
|     }
 | |
| 
 | |
|     tctx->last_block_pos[ch] = (size + first_wsize) / 2;
 | |
| }
 | |
| 
 | |
| static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
 | |
|                          int wtype, float **out, int offset)
 | |
| {
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     float *prev_buf           = tctx->prev_frame + tctx->last_block_pos[0];
 | |
|     int size1, size2, i;
 | |
|     float *out1, *out2;
 | |
| 
 | |
|     for (i = 0; i < tctx->avctx->channels; i++)
 | |
|         imdct_and_window(tctx, ftype, wtype,
 | |
|                          tctx->spectrum + i * mtab->size,
 | |
|                          prev_buf + 2 * i * mtab->size,
 | |
|                          i);
 | |
| 
 | |
|     if (!out)
 | |
|         return;
 | |
| 
 | |
|     size2 = tctx->last_block_pos[0];
 | |
|     size1 = mtab->size - size2;
 | |
| 
 | |
|     out1 = &out[0][0] + offset;
 | |
|     memcpy(out1,         prev_buf,         size1 * sizeof(*out1));
 | |
|     memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
 | |
| 
 | |
|     if (tctx->avctx->channels == 2) {
 | |
|         out2 = &out[1][0] + offset;
 | |
|         memcpy(out2, &prev_buf[2 * mtab->size],
 | |
|                size1 * sizeof(*out2));
 | |
|         memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
 | |
|                size2 * sizeof(*out2));
 | |
|         tctx->fdsp.butterflies_float(out1, out2, mtab->size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
 | |
|                                      enum TwinVQFrameType ftype)
 | |
| {
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     TwinVQFrameData *bits     = &tctx->bits[tctx->cur_frame];
 | |
|     int channels              = tctx->avctx->channels;
 | |
|     int sub        = mtab->fmode[ftype].sub;
 | |
|     int block_size = mtab->size / sub;
 | |
|     float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
 | |
|     float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
 | |
| 
 | |
|     int i, j;
 | |
| 
 | |
|     dequant(tctx, bits->main_coeffs, out, ftype,
 | |
|             mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
 | |
|             mtab->fmode[ftype].cb_len_read);
 | |
| 
 | |
|     dec_gain(tctx, ftype, gain);
 | |
| 
 | |
|     if (ftype == TWINVQ_FT_LONG) {
 | |
|         int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
 | |
|                        tctx->n_div[3];
 | |
|         dequant(tctx, bits->ppc_coeffs, ppc_shape,
 | |
|                 TWINVQ_FT_PPC, mtab->ppc_shape_cb,
 | |
|                 mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
 | |
|                 cb_len_p);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < channels; i++) {
 | |
|         float *chunk = out + mtab->size * i;
 | |
|         float lsp[TWINVQ_LSP_COEFS_MAX];
 | |
| 
 | |
|         for (j = 0; j < sub; j++) {
 | |
|             tctx->dec_bark_env(tctx, bits->bark1[i][j],
 | |
|                                bits->bark_use_hist[i][j], i,
 | |
|                                tctx->tmp_buf, gain[sub * i + j], ftype);
 | |
| 
 | |
|             tctx->fdsp.vector_fmul(chunk + block_size * j,
 | |
|                                    chunk + block_size * j,
 | |
|                                    tctx->tmp_buf, block_size);
 | |
|         }
 | |
| 
 | |
|         if (ftype == TWINVQ_FT_LONG)
 | |
|             tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
 | |
|                              ppc_shape + i * mtab->ppc_shape_len, chunk);
 | |
| 
 | |
|         decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
 | |
|                    bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
 | |
| 
 | |
|         dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
 | |
| 
 | |
|         for (j = 0; j < mtab->fmode[ftype].sub; j++) {
 | |
|             tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
 | |
|             chunk += block_size;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
 | |
|     TWINVQ_FT_LONG,   TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
 | |
|     TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG,  TWINVQ_FT_MEDIUM,
 | |
|     TWINVQ_FT_MEDIUM
 | |
| };
 | |
| 
 | |
| int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                            int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     TwinVQContext *tctx = avctx->priv_data;
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     float **out = NULL;
 | |
|     int ret;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     if (tctx->discarded_packets >= 2) {
 | |
|         frame->nb_samples = mtab->size * tctx->frames_per_packet;
 | |
|         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|             return ret;
 | |
|         out = (float **)frame->extended_data;
 | |
|     }
 | |
| 
 | |
|     if (buf_size < avctx->block_align) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Frame too small (%d bytes). Truncated file?\n", buf_size);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
 | |
|          tctx->cur_frame++) {
 | |
|         read_and_decode_spectrum(tctx, tctx->spectrum,
 | |
|                                  tctx->bits[tctx->cur_frame].ftype);
 | |
| 
 | |
|         imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
 | |
|                      tctx->bits[tctx->cur_frame].window_type, out,
 | |
|                      tctx->cur_frame * mtab->size);
 | |
| 
 | |
|         FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
 | |
|     }
 | |
| 
 | |
|     if (tctx->discarded_packets < 2) {
 | |
|         tctx->discarded_packets++;
 | |
|         *got_frame_ptr = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     // VQF can deliver packets 1 byte greater than block align
 | |
|     if (buf_size == avctx->block_align + 1)
 | |
|         return buf_size;
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Init IMDCT and windowing tables
 | |
|  */
 | |
| static av_cold int init_mdct_win(TwinVQContext *tctx)
 | |
| {
 | |
|     int i, j, ret;
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
 | |
|     int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
 | |
|     int channels = tctx->avctx->channels;
 | |
|     float norm = channels == 1 ? 2.0 : 1.0;
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
 | |
|         if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
 | |
|                                 -sqrt(norm / bsize) / (1 << 15))))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
 | |
|                      mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
 | |
| 
 | |
|     FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
 | |
|                      2 * mtab->size * channels * sizeof(*tctx->spectrum),
 | |
|                      alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
 | |
|                      2 * mtab->size * channels * sizeof(*tctx->curr_frame),
 | |
|                      alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
 | |
|                      2 * mtab->size * channels * sizeof(*tctx->prev_frame),
 | |
|                      alloc_fail);
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int m       = 4 * mtab->size / mtab->fmode[i].sub;
 | |
|         double freq = 2 * M_PI / m;
 | |
|         FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
 | |
|                          (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
 | |
| 
 | |
|         for (j = 0; j <= m / 8; j++)
 | |
|             tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
 | |
|         for (j = 1; j < m / 8; j++)
 | |
|             tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
 | |
|     }
 | |
| 
 | |
|     ff_init_ff_sine_windows(av_log2(size_m));
 | |
|     ff_init_ff_sine_windows(av_log2(size_s / 2));
 | |
|     ff_init_ff_sine_windows(av_log2(mtab->size));
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| alloc_fail:
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
 | |
|  * each line do a cyclic permutation, i.e.
 | |
|  * abcdefghijklm -> defghijklmabc
 | |
|  * where the amount to be shifted is evaluated depending on the column.
 | |
|  */
 | |
| static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
 | |
|                               int block_size,
 | |
|                               const uint8_t line_len[2], int length_div,
 | |
|                               enum TwinVQFrameType ftype)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < line_len[0]; i++) {
 | |
|         int shift;
 | |
| 
 | |
|         if (num_blocks == 1                                    ||
 | |
|             (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
 | |
|             (ftype != TWINVQ_FT_LONG && num_vect & 1)          ||
 | |
|             i == line_len[1]) {
 | |
|             shift = 0;
 | |
|         } else if (ftype == TWINVQ_FT_LONG) {
 | |
|             shift = i;
 | |
|         } else
 | |
|             shift = i * i;
 | |
| 
 | |
|         for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
 | |
|             tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpret the input data as in the following table:
 | |
|  *
 | |
|  * @verbatim
 | |
|  *
 | |
|  * abcdefgh
 | |
|  * ijklmnop
 | |
|  * qrstuvw
 | |
|  * x123456
 | |
|  *
 | |
|  * @endverbatim
 | |
|  *
 | |
|  * and transpose it, giving the output
 | |
|  * aiqxbjr1cks2dlt3emu4fvn5gow6hp
 | |
|  */
 | |
| static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
 | |
|                            const uint8_t line_len[2], int length_div)
 | |
| {
 | |
|     int i, j;
 | |
|     int cont = 0;
 | |
| 
 | |
|     for (i = 0; i < num_vect; i++)
 | |
|         for (j = 0; j < line_len[i >= length_div]; j++)
 | |
|             out[cont++] = in[j * num_vect + i];
 | |
| }
 | |
| 
 | |
| static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
 | |
| {
 | |
|     int block_size = size / n_blocks;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
 | |
| }
 | |
| 
 | |
| static av_cold void construct_perm_table(TwinVQContext *tctx,
 | |
|                                          enum TwinVQFrameType ftype)
 | |
| {
 | |
|     int block_size, size;
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
 | |
| 
 | |
|     if (ftype == TWINVQ_FT_PPC) {
 | |
|         size       = tctx->avctx->channels;
 | |
|         block_size = mtab->ppc_shape_len;
 | |
|     } else {
 | |
|         size       = tctx->avctx->channels * mtab->fmode[ftype].sub;
 | |
|         block_size = mtab->size / mtab->fmode[ftype].sub;
 | |
|     }
 | |
| 
 | |
|     permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
 | |
|                       block_size, tctx->length[ftype],
 | |
|                       tctx->length_change[ftype], ftype);
 | |
| 
 | |
|     transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
 | |
|                    tctx->length[ftype], tctx->length_change[ftype]);
 | |
| 
 | |
|     linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
 | |
|                 size * block_size);
 | |
| }
 | |
| 
 | |
| static av_cold void init_bitstream_params(TwinVQContext *tctx)
 | |
| {
 | |
|     const TwinVQModeTab *mtab = tctx->mtab;
 | |
|     int n_ch                  = tctx->avctx->channels;
 | |
|     int total_fr_bits         = tctx->avctx->bit_rate * mtab->size /
 | |
|                                 tctx->avctx->sample_rate;
 | |
| 
 | |
|     int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
 | |
|                                      mtab->lsp_split * mtab->lsp_bit2);
 | |
| 
 | |
|     int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
 | |
|                            mtab->ppc_period_bit);
 | |
| 
 | |
|     int bsize_no_main_cb[3], bse_bits[3], i;
 | |
|     enum TwinVQFrameType frametype;
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         // +1 for history usage switch
 | |
|         bse_bits[i] = n_ch *
 | |
|                       (mtab->fmode[i].bark_n_coef *
 | |
|                        mtab->fmode[i].bark_n_bit + 1);
 | |
| 
 | |
|     bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
 | |
|                           TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
 | |
| 
 | |
|     for (i = 0; i < 2; i++)
 | |
|         bsize_no_main_cb[i] =
 | |
|             lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
 | |
|             TWINVQ_WINDOW_TYPE_BITS +
 | |
|             mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
 | |
| 
 | |
|     if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
 | |
|         bsize_no_main_cb[1] += 2;
 | |
|         bsize_no_main_cb[2] += 2;
 | |
|     }
 | |
| 
 | |
|     // The remaining bits are all used for the main spectrum coefficients
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         int bit_size, vect_size;
 | |
|         int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
 | |
|         if (i == 3) {
 | |
|             bit_size  = n_ch * mtab->ppc_shape_bit;
 | |
|             vect_size = n_ch * mtab->ppc_shape_len;
 | |
|         } else {
 | |
|             bit_size  = total_fr_bits - bsize_no_main_cb[i];
 | |
|             vect_size = n_ch * mtab->size;
 | |
|         }
 | |
| 
 | |
|         tctx->n_div[i] = (bit_size + 13) / 14;
 | |
| 
 | |
|         rounded_up                     = (bit_size + tctx->n_div[i] - 1) /
 | |
|                                          tctx->n_div[i];
 | |
|         rounded_down                   = (bit_size) / tctx->n_div[i];
 | |
|         num_rounded_down               = rounded_up * tctx->n_div[i] - bit_size;
 | |
|         num_rounded_up                 = tctx->n_div[i] - num_rounded_down;
 | |
|         tctx->bits_main_spec[0][i][0]  = (rounded_up + 1)   / 2;
 | |
|         tctx->bits_main_spec[1][i][0]  =  rounded_up        / 2;
 | |
|         tctx->bits_main_spec[0][i][1]  = (rounded_down + 1) / 2;
 | |
|         tctx->bits_main_spec[1][i][1]  =  rounded_down      / 2;
 | |
|         tctx->bits_main_spec_change[i] = num_rounded_up;
 | |
| 
 | |
|         rounded_up             = (vect_size + tctx->n_div[i] - 1) /
 | |
|                                  tctx->n_div[i];
 | |
|         rounded_down           = (vect_size) / tctx->n_div[i];
 | |
|         num_rounded_down       = rounded_up * tctx->n_div[i] - vect_size;
 | |
|         num_rounded_up         = tctx->n_div[i] - num_rounded_down;
 | |
|         tctx->length[i][0]     = rounded_up;
 | |
|         tctx->length[i][1]     = rounded_down;
 | |
|         tctx->length_change[i] = num_rounded_up;
 | |
|     }
 | |
| 
 | |
|     for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
 | |
|         construct_perm_table(tctx, frametype);
 | |
| }
 | |
| 
 | |
| av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     TwinVQContext *tctx = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         ff_mdct_end(&tctx->mdct_ctx[i]);
 | |
|         av_free(tctx->cos_tabs[i]);
 | |
|     }
 | |
| 
 | |
|     av_free(tctx->curr_frame);
 | |
|     av_free(tctx->spectrum);
 | |
|     av_free(tctx->prev_frame);
 | |
|     av_free(tctx->tmp_buf);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int ret;
 | |
|     TwinVQContext *tctx = avctx->priv_data;
 | |
| 
 | |
|     tctx->avctx       = avctx;
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     if (!avctx->block_align) {
 | |
|         avctx->block_align = tctx->frame_size + 7 >> 3;
 | |
|     } else if (avctx->block_align * 8 < tctx->frame_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Block align is %d bits, expected %d\n",
 | |
|                avctx->block_align * 8, tctx->frame_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     tctx->frames_per_packet = avctx->block_align * 8 / tctx->frame_size;
 | |
|     if (tctx->frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%d)\n",
 | |
|                tctx->frames_per_packet);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
|     if ((ret = init_mdct_win(tctx))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
 | |
|         ff_twinvq_decode_close(avctx);
 | |
|         return ret;
 | |
|     }
 | |
|     init_bitstream_params(tctx);
 | |
| 
 | |
|     twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
 | |
|                         FF_ARRAY_ELEMS(tctx->bark_hist));
 | |
| 
 | |
|     return 0;
 | |
| }
 |