935 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			935 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ATRAC3 compatible decoder
 | |
|  * Copyright (c) 2006-2008 Maxim Poliakovski
 | |
|  * Copyright (c) 2006-2008 Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * ATRAC3 compatible decoder.
 | |
|  * This decoder handles Sony's ATRAC3 data.
 | |
|  *
 | |
|  * Container formats used to store ATRAC3 data:
 | |
|  * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
 | |
|  *
 | |
|  * To use this decoder, a calling application must supply the extradata
 | |
|  * bytes provided in the containers above.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "avcodec.h"
 | |
| #include "bytestream.h"
 | |
| #include "fft.h"
 | |
| #include "get_bits.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #include "atrac.h"
 | |
| #include "atrac3data.h"
 | |
| 
 | |
| #define JOINT_STEREO    0x12
 | |
| #define STEREO          0x2
 | |
| 
 | |
| #define SAMPLES_PER_FRAME 1024
 | |
| #define MDCT_SIZE          512
 | |
| 
 | |
| typedef struct GainBlock {
 | |
|     AtracGainInfo g_block[4];
 | |
| } GainBlock;
 | |
| 
 | |
| typedef struct TonalComponent {
 | |
|     int pos;
 | |
|     int num_coefs;
 | |
|     float coef[8];
 | |
| } TonalComponent;
 | |
| 
 | |
| typedef struct ChannelUnit {
 | |
|     int            bands_coded;
 | |
|     int            num_components;
 | |
|     float          prev_frame[SAMPLES_PER_FRAME];
 | |
|     int            gc_blk_switch;
 | |
|     TonalComponent components[64];
 | |
|     GainBlock      gain_block[2];
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME];
 | |
|     DECLARE_ALIGNED(32, float, imdct_buf)[SAMPLES_PER_FRAME];
 | |
| 
 | |
|     float          delay_buf1[46]; ///<qmf delay buffers
 | |
|     float          delay_buf2[46];
 | |
|     float          delay_buf3[46];
 | |
| } ChannelUnit;
 | |
| 
 | |
| typedef struct ATRAC3Context {
 | |
|     GetBitContext gb;
 | |
|     //@{
 | |
|     /** stream data */
 | |
|     int coding_mode;
 | |
| 
 | |
|     ChannelUnit *units;
 | |
|     //@}
 | |
|     //@{
 | |
|     /** joint-stereo related variables */
 | |
|     int matrix_coeff_index_prev[4];
 | |
|     int matrix_coeff_index_now[4];
 | |
|     int matrix_coeff_index_next[4];
 | |
|     int weighting_delay[6];
 | |
|     //@}
 | |
|     //@{
 | |
|     /** data buffers */
 | |
|     uint8_t *decoded_bytes_buffer;
 | |
|     float temp_buf[1070];
 | |
|     //@}
 | |
|     //@{
 | |
|     /** extradata */
 | |
|     int scrambled_stream;
 | |
|     //@}
 | |
| 
 | |
|     AtracGCContext  gainc_ctx;
 | |
|     FFTContext mdct_ctx;
 | |
|     AVFloatDSPContext fdsp;
 | |
| } ATRAC3Context;
 | |
| 
 | |
| static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE];
 | |
| static VLC_TYPE atrac3_vlc_table[4096][2];
 | |
| static VLC   spectral_coeff_tab[7];
 | |
| 
 | |
| /**
 | |
|  * Regular 512 points IMDCT without overlapping, with the exception of the
 | |
|  * swapping of odd bands caused by the reverse spectra of the QMF.
 | |
|  *
 | |
|  * @param odd_band  1 if the band is an odd band
 | |
|  */
 | |
| static void imlt(ATRAC3Context *q, float *input, float *output, int odd_band)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (odd_band) {
 | |
|         /**
 | |
|          * Reverse the odd bands before IMDCT, this is an effect of the QMF
 | |
|          * transform or it gives better compression to do it this way.
 | |
|          * FIXME: It should be possible to handle this in imdct_calc
 | |
|          * for that to happen a modification of the prerotation step of
 | |
|          * all SIMD code and C code is needed.
 | |
|          * Or fix the functions before so they generate a pre reversed spectrum.
 | |
|          */
 | |
|         for (i = 0; i < 128; i++)
 | |
|             FFSWAP(float, input[i], input[255 - i]);
 | |
|     }
 | |
| 
 | |
|     q->mdct_ctx.imdct_calc(&q->mdct_ctx, output, input);
 | |
| 
 | |
|     /* Perform windowing on the output. */
 | |
|     q->fdsp.vector_fmul(output, output, mdct_window, MDCT_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * indata descrambling, only used for data coming from the rm container
 | |
|  */
 | |
| static int decode_bytes(const uint8_t *input, uint8_t *out, int bytes)
 | |
| {
 | |
|     int i, off;
 | |
|     uint32_t c;
 | |
|     const uint32_t *buf;
 | |
|     uint32_t *output = (uint32_t *)out;
 | |
| 
 | |
|     off = (intptr_t)input & 3;
 | |
|     buf = (const uint32_t *)(input - off);
 | |
|     if (off)
 | |
|         c = av_be2ne32((0x537F6103U >> (off * 8)) | (0x537F6103U << (32 - (off * 8))));
 | |
|     else
 | |
|         c = av_be2ne32(0x537F6103U);
 | |
|     bytes += 3 + off;
 | |
|     for (i = 0; i < bytes / 4; i++)
 | |
|         output[i] = c ^ buf[i];
 | |
| 
 | |
|     if (off)
 | |
|         avpriv_request_sample(NULL, "Offset of %d", off);
 | |
| 
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| static av_cold void init_imdct_window(void)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     /* generate the mdct window, for details see
 | |
|      * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
 | |
|     for (i = 0, j = 255; i < 128; i++, j--) {
 | |
|         float wi = sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
 | |
|         float wj = sin(((j + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
 | |
|         float w  = 0.5 * (wi * wi + wj * wj);
 | |
|         mdct_window[i] = mdct_window[511 - i] = wi / w;
 | |
|         mdct_window[j] = mdct_window[511 - j] = wj / w;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_cold int atrac3_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
| 
 | |
|     av_free(q->units);
 | |
|     av_free(q->decoded_bytes_buffer);
 | |
| 
 | |
|     ff_mdct_end(&q->mdct_ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Mantissa decoding
 | |
|  *
 | |
|  * @param selector     which table the output values are coded with
 | |
|  * @param coding_flag  constant length coding or variable length coding
 | |
|  * @param mantissas    mantissa output table
 | |
|  * @param num_codes    number of values to get
 | |
|  */
 | |
| static void read_quant_spectral_coeffs(GetBitContext *gb, int selector,
 | |
|                                        int coding_flag, int *mantissas,
 | |
|                                        int num_codes)
 | |
| {
 | |
|     int i, code, huff_symb;
 | |
| 
 | |
|     if (selector == 1)
 | |
|         num_codes /= 2;
 | |
| 
 | |
|     if (coding_flag != 0) {
 | |
|         /* constant length coding (CLC) */
 | |
|         int num_bits = clc_length_tab[selector];
 | |
| 
 | |
|         if (selector > 1) {
 | |
|             for (i = 0; i < num_codes; i++) {
 | |
|                 if (num_bits)
 | |
|                     code = get_sbits(gb, num_bits);
 | |
|                 else
 | |
|                     code = 0;
 | |
|                 mantissas[i] = code;
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < num_codes; i++) {
 | |
|                 if (num_bits)
 | |
|                     code = get_bits(gb, num_bits); // num_bits is always 4 in this case
 | |
|                 else
 | |
|                     code = 0;
 | |
|                 mantissas[i * 2    ] = mantissa_clc_tab[code >> 2];
 | |
|                 mantissas[i * 2 + 1] = mantissa_clc_tab[code &  3];
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* variable length coding (VLC) */
 | |
|         if (selector != 1) {
 | |
|             for (i = 0; i < num_codes; i++) {
 | |
|                 huff_symb = get_vlc2(gb, spectral_coeff_tab[selector-1].table,
 | |
|                                      spectral_coeff_tab[selector-1].bits, 3);
 | |
|                 huff_symb += 1;
 | |
|                 code = huff_symb >> 1;
 | |
|                 if (huff_symb & 1)
 | |
|                     code = -code;
 | |
|                 mantissas[i] = code;
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < num_codes; i++) {
 | |
|                 huff_symb = get_vlc2(gb, spectral_coeff_tab[selector - 1].table,
 | |
|                                      spectral_coeff_tab[selector - 1].bits, 3);
 | |
|                 mantissas[i * 2    ] = mantissa_vlc_tab[huff_symb * 2    ];
 | |
|                 mantissas[i * 2 + 1] = mantissa_vlc_tab[huff_symb * 2 + 1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Restore the quantized band spectrum coefficients
 | |
|  *
 | |
|  * @return subband count, fix for broken specification/files
 | |
|  */
 | |
| static int decode_spectrum(GetBitContext *gb, float *output)
 | |
| {
 | |
|     int num_subbands, coding_mode, i, j, first, last, subband_size;
 | |
|     int subband_vlc_index[32], sf_index[32];
 | |
|     int mantissas[128];
 | |
|     float scale_factor;
 | |
| 
 | |
|     num_subbands = get_bits(gb, 5);  // number of coded subbands
 | |
|     coding_mode  = get_bits1(gb);    // coding Mode: 0 - VLC/ 1-CLC
 | |
| 
 | |
|     /* get the VLC selector table for the subbands, 0 means not coded */
 | |
|     for (i = 0; i <= num_subbands; i++)
 | |
|         subband_vlc_index[i] = get_bits(gb, 3);
 | |
| 
 | |
|     /* read the scale factor indexes from the stream */
 | |
|     for (i = 0; i <= num_subbands; i++) {
 | |
|         if (subband_vlc_index[i] != 0)
 | |
|             sf_index[i] = get_bits(gb, 6);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i <= num_subbands; i++) {
 | |
|         first = subband_tab[i    ];
 | |
|         last  = subband_tab[i + 1];
 | |
| 
 | |
|         subband_size = last - first;
 | |
| 
 | |
|         if (subband_vlc_index[i] != 0) {
 | |
|             /* decode spectral coefficients for this subband */
 | |
|             /* TODO: This can be done faster is several blocks share the
 | |
|              * same VLC selector (subband_vlc_index) */
 | |
|             read_quant_spectral_coeffs(gb, subband_vlc_index[i], coding_mode,
 | |
|                                        mantissas, subband_size);
 | |
| 
 | |
|             /* decode the scale factor for this subband */
 | |
|             scale_factor = ff_atrac_sf_table[sf_index[i]] *
 | |
|                            inv_max_quant[subband_vlc_index[i]];
 | |
| 
 | |
|             /* inverse quantize the coefficients */
 | |
|             for (j = 0; first < last; first++, j++)
 | |
|                 output[first] = mantissas[j] * scale_factor;
 | |
|         } else {
 | |
|             /* this subband was not coded, so zero the entire subband */
 | |
|             memset(output + first, 0, subband_size * sizeof(*output));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* clear the subbands that were not coded */
 | |
|     first = subband_tab[i];
 | |
|     memset(output + first, 0, (SAMPLES_PER_FRAME - first) * sizeof(*output));
 | |
|     return num_subbands;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Restore the quantized tonal components
 | |
|  *
 | |
|  * @param components tonal components
 | |
|  * @param num_bands  number of coded bands
 | |
|  */
 | |
| static int decode_tonal_components(GetBitContext *gb,
 | |
|                                    TonalComponent *components, int num_bands)
 | |
| {
 | |
|     int i, b, c, m;
 | |
|     int nb_components, coding_mode_selector, coding_mode;
 | |
|     int band_flags[4], mantissa[8];
 | |
|     int component_count = 0;
 | |
| 
 | |
|     nb_components = get_bits(gb, 5);
 | |
| 
 | |
|     /* no tonal components */
 | |
|     if (nb_components == 0)
 | |
|         return 0;
 | |
| 
 | |
|     coding_mode_selector = get_bits(gb, 2);
 | |
|     if (coding_mode_selector == 2)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     coding_mode = coding_mode_selector & 1;
 | |
| 
 | |
|     for (i = 0; i < nb_components; i++) {
 | |
|         int coded_values_per_component, quant_step_index;
 | |
| 
 | |
|         for (b = 0; b <= num_bands; b++)
 | |
|             band_flags[b] = get_bits1(gb);
 | |
| 
 | |
|         coded_values_per_component = get_bits(gb, 3);
 | |
| 
 | |
|         quant_step_index = get_bits(gb, 3);
 | |
|         if (quant_step_index <= 1)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (coding_mode_selector == 3)
 | |
|             coding_mode = get_bits1(gb);
 | |
| 
 | |
|         for (b = 0; b < (num_bands + 1) * 4; b++) {
 | |
|             int coded_components;
 | |
| 
 | |
|             if (band_flags[b >> 2] == 0)
 | |
|                 continue;
 | |
| 
 | |
|             coded_components = get_bits(gb, 3);
 | |
| 
 | |
|             for (c = 0; c < coded_components; c++) {
 | |
|                 TonalComponent *cmp = &components[component_count];
 | |
|                 int sf_index, coded_values, max_coded_values;
 | |
|                 float scale_factor;
 | |
| 
 | |
|                 sf_index = get_bits(gb, 6);
 | |
|                 if (component_count >= 64)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
| 
 | |
|                 cmp->pos = b * 64 + get_bits(gb, 6);
 | |
| 
 | |
|                 max_coded_values = SAMPLES_PER_FRAME - cmp->pos;
 | |
|                 coded_values     = coded_values_per_component + 1;
 | |
|                 coded_values     = FFMIN(max_coded_values, coded_values);
 | |
| 
 | |
|                 scale_factor = ff_atrac_sf_table[sf_index] *
 | |
|                                inv_max_quant[quant_step_index];
 | |
| 
 | |
|                 read_quant_spectral_coeffs(gb, quant_step_index, coding_mode,
 | |
|                                            mantissa, coded_values);
 | |
| 
 | |
|                 cmp->num_coefs = coded_values;
 | |
| 
 | |
|                 /* inverse quant */
 | |
|                 for (m = 0; m < coded_values; m++)
 | |
|                     cmp->coef[m] = mantissa[m] * scale_factor;
 | |
| 
 | |
|                 component_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return component_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode gain parameters for the coded bands
 | |
|  *
 | |
|  * @param block      the gainblock for the current band
 | |
|  * @param num_bands  amount of coded bands
 | |
|  */
 | |
| static int decode_gain_control(GetBitContext *gb, GainBlock *block,
 | |
|                                int num_bands)
 | |
| {
 | |
|     int i, j;
 | |
|     int *level, *loc;
 | |
| 
 | |
|     AtracGainInfo *gain = block->g_block;
 | |
| 
 | |
|     for (i = 0; i <= num_bands; i++) {
 | |
|         gain[i].num_points    = get_bits(gb, 3);
 | |
|         level                 = gain[i].lev_code;
 | |
|         loc                   = gain[i].loc_code;
 | |
| 
 | |
|         for (j = 0; j < gain[i].num_points; j++) {
 | |
|             level[j] = get_bits(gb, 4);
 | |
|             loc[j]   = get_bits(gb, 5);
 | |
|             if (j && loc[j] <= loc[j - 1])
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the unused blocks. */
 | |
|     for (; i < 4 ; i++)
 | |
|         gain[i].num_points = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Combine the tonal band spectrum and regular band spectrum
 | |
|  *
 | |
|  * @param spectrum        output spectrum buffer
 | |
|  * @param num_components  number of tonal components
 | |
|  * @param components      tonal components for this band
 | |
|  * @return                position of the last tonal coefficient
 | |
|  */
 | |
| static int add_tonal_components(float *spectrum, int num_components,
 | |
|                                 TonalComponent *components)
 | |
| {
 | |
|     int i, j, last_pos = -1;
 | |
|     float *input, *output;
 | |
| 
 | |
|     for (i = 0; i < num_components; i++) {
 | |
|         last_pos = FFMAX(components[i].pos + components[i].num_coefs, last_pos);
 | |
|         input    = components[i].coef;
 | |
|         output   = &spectrum[components[i].pos];
 | |
| 
 | |
|         for (j = 0; j < components[i].num_coefs; j++)
 | |
|             output[j] += input[j];
 | |
|     }
 | |
| 
 | |
|     return last_pos;
 | |
| }
 | |
| 
 | |
| #define INTERPOLATE(old, new, nsample) \
 | |
|     ((old) + (nsample) * 0.125 * ((new) - (old)))
 | |
| 
 | |
| static void reverse_matrixing(float *su1, float *su2, int *prev_code,
 | |
|                               int *curr_code)
 | |
| {
 | |
|     int i, nsample, band;
 | |
|     float mc1_l, mc1_r, mc2_l, mc2_r;
 | |
| 
 | |
|     for (i = 0, band = 0; band < 4 * 256; band += 256, i++) {
 | |
|         int s1 = prev_code[i];
 | |
|         int s2 = curr_code[i];
 | |
|         nsample = band;
 | |
| 
 | |
|         if (s1 != s2) {
 | |
|             /* Selector value changed, interpolation needed. */
 | |
|             mc1_l = matrix_coeffs[s1 * 2    ];
 | |
|             mc1_r = matrix_coeffs[s1 * 2 + 1];
 | |
|             mc2_l = matrix_coeffs[s2 * 2    ];
 | |
|             mc2_r = matrix_coeffs[s2 * 2 + 1];
 | |
| 
 | |
|             /* Interpolation is done over the first eight samples. */
 | |
|             for (; nsample < band + 8; nsample++) {
 | |
|                 float c1 = su1[nsample];
 | |
|                 float c2 = su2[nsample];
 | |
|                 c2 = c1 * INTERPOLATE(mc1_l, mc2_l, nsample - band) +
 | |
|                      c2 * INTERPOLATE(mc1_r, mc2_r, nsample - band);
 | |
|                 su1[nsample] = c2;
 | |
|                 su2[nsample] = c1 * 2.0 - c2;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Apply the matrix without interpolation. */
 | |
|         switch (s2) {
 | |
|         case 0:     /* M/S decoding */
 | |
|             for (; nsample < band + 256; nsample++) {
 | |
|                 float c1 = su1[nsample];
 | |
|                 float c2 = su2[nsample];
 | |
|                 su1[nsample] =  c2       * 2.0;
 | |
|                 su2[nsample] = (c1 - c2) * 2.0;
 | |
|             }
 | |
|             break;
 | |
|         case 1:
 | |
|             for (; nsample < band + 256; nsample++) {
 | |
|                 float c1 = su1[nsample];
 | |
|                 float c2 = su2[nsample];
 | |
|                 su1[nsample] = (c1 + c2) *  2.0;
 | |
|                 su2[nsample] =  c2       * -2.0;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|         case 3:
 | |
|             for (; nsample < band + 256; nsample++) {
 | |
|                 float c1 = su1[nsample];
 | |
|                 float c2 = su2[nsample];
 | |
|                 su1[nsample] = c1 + c2;
 | |
|                 su2[nsample] = c1 - c2;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void get_channel_weights(int index, int flag, float ch[2])
 | |
| {
 | |
|     if (index == 7) {
 | |
|         ch[0] = 1.0;
 | |
|         ch[1] = 1.0;
 | |
|     } else {
 | |
|         ch[0] = (index & 7) / 7.0;
 | |
|         ch[1] = sqrt(2 - ch[0] * ch[0]);
 | |
|         if (flag)
 | |
|             FFSWAP(float, ch[0], ch[1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void channel_weighting(float *su1, float *su2, int *p3)
 | |
| {
 | |
|     int band, nsample;
 | |
|     /* w[x][y] y=0 is left y=1 is right */
 | |
|     float w[2][2];
 | |
| 
 | |
|     if (p3[1] != 7 || p3[3] != 7) {
 | |
|         get_channel_weights(p3[1], p3[0], w[0]);
 | |
|         get_channel_weights(p3[3], p3[2], w[1]);
 | |
| 
 | |
|         for (band = 256; band < 4 * 256; band += 256) {
 | |
|             for (nsample = band; nsample < band + 8; nsample++) {
 | |
|                 su1[nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample - band);
 | |
|                 su2[nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample - band);
 | |
|             }
 | |
|             for(; nsample < band + 256; nsample++) {
 | |
|                 su1[nsample] *= w[1][0];
 | |
|                 su2[nsample] *= w[1][1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a Sound Unit
 | |
|  *
 | |
|  * @param snd           the channel unit to be used
 | |
|  * @param output        the decoded samples before IQMF in float representation
 | |
|  * @param channel_num   channel number
 | |
|  * @param coding_mode   the coding mode (JOINT_STEREO or regular stereo/mono)
 | |
|  */
 | |
| static int decode_channel_sound_unit(ATRAC3Context *q, GetBitContext *gb,
 | |
|                                      ChannelUnit *snd, float *output,
 | |
|                                      int channel_num, int coding_mode)
 | |
| {
 | |
|     int band, ret, num_subbands, last_tonal, num_bands;
 | |
|     GainBlock *gain1 = &snd->gain_block[    snd->gc_blk_switch];
 | |
|     GainBlock *gain2 = &snd->gain_block[1 - snd->gc_blk_switch];
 | |
| 
 | |
|     if (coding_mode == JOINT_STEREO && channel_num == 1) {
 | |
|         if (get_bits(gb, 2) != 3) {
 | |
|             av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else {
 | |
|         if (get_bits(gb, 6) != 0x28) {
 | |
|             av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* number of coded QMF bands */
 | |
|     snd->bands_coded = get_bits(gb, 2);
 | |
| 
 | |
|     ret = decode_gain_control(gb, gain2, snd->bands_coded);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     snd->num_components = decode_tonal_components(gb, snd->components,
 | |
|                                                   snd->bands_coded);
 | |
|     if (snd->num_components < 0)
 | |
|         return snd->num_components;
 | |
| 
 | |
|     num_subbands = decode_spectrum(gb, snd->spectrum);
 | |
| 
 | |
|     /* Merge the decoded spectrum and tonal components. */
 | |
|     last_tonal = add_tonal_components(snd->spectrum, snd->num_components,
 | |
|                                       snd->components);
 | |
| 
 | |
| 
 | |
|     /* calculate number of used MLT/QMF bands according to the amount of coded
 | |
|        spectral lines */
 | |
|     num_bands = (subband_tab[num_subbands] - 1) >> 8;
 | |
|     if (last_tonal >= 0)
 | |
|         num_bands = FFMAX((last_tonal + 256) >> 8, num_bands);
 | |
| 
 | |
| 
 | |
|     /* Reconstruct time domain samples. */
 | |
|     for (band = 0; band < 4; band++) {
 | |
|         /* Perform the IMDCT step without overlapping. */
 | |
|         if (band <= num_bands)
 | |
|             imlt(q, &snd->spectrum[band * 256], snd->imdct_buf, band & 1);
 | |
|         else
 | |
|             memset(snd->imdct_buf, 0, 512 * sizeof(*snd->imdct_buf));
 | |
| 
 | |
|         /* gain compensation and overlapping */
 | |
|         ff_atrac_gain_compensation(&q->gainc_ctx, snd->imdct_buf,
 | |
|                                    &snd->prev_frame[band * 256],
 | |
|                                    &gain1->g_block[band], &gain2->g_block[band],
 | |
|                                    256, &output[band * 256]);
 | |
|     }
 | |
| 
 | |
|     /* Swap the gain control buffers for the next frame. */
 | |
|     snd->gc_blk_switch ^= 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int decode_frame(AVCodecContext *avctx, const uint8_t *databuf,
 | |
|                         float **out_samples)
 | |
| {
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
|     int ret, i;
 | |
|     uint8_t *ptr1;
 | |
| 
 | |
|     if (q->coding_mode == JOINT_STEREO) {
 | |
|         /* channel coupling mode */
 | |
|         /* decode Sound Unit 1 */
 | |
|         init_get_bits(&q->gb, databuf, avctx->block_align * 8);
 | |
| 
 | |
|         ret = decode_channel_sound_unit(q, &q->gb, q->units, out_samples[0], 0,
 | |
|                                         JOINT_STEREO);
 | |
|         if (ret != 0)
 | |
|             return ret;
 | |
| 
 | |
|         /* Framedata of the su2 in the joint-stereo mode is encoded in
 | |
|          * reverse byte order so we need to swap it first. */
 | |
|         if (databuf == q->decoded_bytes_buffer) {
 | |
|             uint8_t *ptr2 = q->decoded_bytes_buffer + avctx->block_align - 1;
 | |
|             ptr1          = q->decoded_bytes_buffer;
 | |
|             for (i = 0; i < avctx->block_align / 2; i++, ptr1++, ptr2--)
 | |
|                 FFSWAP(uint8_t, *ptr1, *ptr2);
 | |
|         } else {
 | |
|             const uint8_t *ptr2 = databuf + avctx->block_align - 1;
 | |
|             for (i = 0; i < avctx->block_align; i++)
 | |
|                 q->decoded_bytes_buffer[i] = *ptr2--;
 | |
|         }
 | |
| 
 | |
|         /* Skip the sync codes (0xF8). */
 | |
|         ptr1 = q->decoded_bytes_buffer;
 | |
|         for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
 | |
|             if (i >= avctx->block_align)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /* set the bitstream reader at the start of the second Sound Unit*/
 | |
|         init_get_bits(&q->gb, ptr1, (avctx->block_align - i) * 8);
 | |
| 
 | |
|         /* Fill the Weighting coeffs delay buffer */
 | |
|         memmove(q->weighting_delay, &q->weighting_delay[2],
 | |
|                 4 * sizeof(*q->weighting_delay));
 | |
|         q->weighting_delay[4] = get_bits1(&q->gb);
 | |
|         q->weighting_delay[5] = get_bits(&q->gb, 3);
 | |
| 
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
 | |
|             q->matrix_coeff_index_now[i]  = q->matrix_coeff_index_next[i];
 | |
|             q->matrix_coeff_index_next[i] = get_bits(&q->gb, 2);
 | |
|         }
 | |
| 
 | |
|         /* Decode Sound Unit 2. */
 | |
|         ret = decode_channel_sound_unit(q, &q->gb, &q->units[1],
 | |
|                                         out_samples[1], 1, JOINT_STEREO);
 | |
|         if (ret != 0)
 | |
|             return ret;
 | |
| 
 | |
|         /* Reconstruct the channel coefficients. */
 | |
|         reverse_matrixing(out_samples[0], out_samples[1],
 | |
|                           q->matrix_coeff_index_prev,
 | |
|                           q->matrix_coeff_index_now);
 | |
| 
 | |
|         channel_weighting(out_samples[0], out_samples[1], q->weighting_delay);
 | |
|     } else {
 | |
|         /* normal stereo mode or mono */
 | |
|         /* Decode the channel sound units. */
 | |
|         for (i = 0; i < avctx->channels; i++) {
 | |
|             /* Set the bitstream reader at the start of a channel sound unit. */
 | |
|             init_get_bits(&q->gb,
 | |
|                           databuf + i * avctx->block_align / avctx->channels,
 | |
|                           avctx->block_align * 8 / avctx->channels);
 | |
| 
 | |
|             ret = decode_channel_sound_unit(q, &q->gb, &q->units[i],
 | |
|                                             out_samples[i], i, q->coding_mode);
 | |
|             if (ret != 0)
 | |
|                 return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Apply the iQMF synthesis filter. */
 | |
|     for (i = 0; i < avctx->channels; i++) {
 | |
|         float *p1 = out_samples[i];
 | |
|         float *p2 = p1 + 256;
 | |
|         float *p3 = p2 + 256;
 | |
|         float *p4 = p3 + 256;
 | |
|         ff_atrac_iqmf(p1, p2, 256, p1, q->units[i].delay_buf1, q->temp_buf);
 | |
|         ff_atrac_iqmf(p4, p3, 256, p3, q->units[i].delay_buf2, q->temp_buf);
 | |
|         ff_atrac_iqmf(p1, p3, 512, p1, q->units[i].delay_buf3, q->temp_buf);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int atrac3_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                                int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
|     int ret;
 | |
|     const uint8_t *databuf;
 | |
| 
 | |
|     if (buf_size < avctx->block_align) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Frame too small (%d bytes). Truncated file?\n", buf_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = SAMPLES_PER_FRAME;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Check if we need to descramble and what buffer to pass on. */
 | |
|     if (q->scrambled_stream) {
 | |
|         decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
 | |
|         databuf = q->decoded_bytes_buffer;
 | |
|     } else {
 | |
|         databuf = buf;
 | |
|     }
 | |
| 
 | |
|     ret = decode_frame(avctx, databuf, (float **)frame->extended_data);
 | |
|     if (ret) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "Frame decoding error!\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| static av_cold void atrac3_init_static_data(AVCodec *codec)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     init_imdct_window();
 | |
|     ff_atrac_generate_tables();
 | |
| 
 | |
|     /* Initialize the VLC tables. */
 | |
|     for (i = 0; i < 7; i++) {
 | |
|         spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
 | |
|         spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] -
 | |
|                                                 atrac3_vlc_offs[i    ];
 | |
|         init_vlc(&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
 | |
|                  huff_bits[i],  1, 1,
 | |
|                  huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_cold int atrac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int i, ret;
 | |
|     int version, delay, samples_per_frame, frame_factor;
 | |
|     const uint8_t *edata_ptr = avctx->extradata;
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
| 
 | |
|     if (avctx->channels <= 0 || avctx->channels > 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Channel configuration error!\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* Take care of the codec-specific extradata. */
 | |
|     if (avctx->extradata_size == 14) {
 | |
|         /* Parse the extradata, WAV format */
 | |
|         av_log(avctx, AV_LOG_DEBUG, "[0-1] %d\n",
 | |
|                bytestream_get_le16(&edata_ptr));  // Unknown value always 1
 | |
|         edata_ptr += 4;                             // samples per channel
 | |
|         q->coding_mode = bytestream_get_le16(&edata_ptr);
 | |
|         av_log(avctx, AV_LOG_DEBUG,"[8-9] %d\n",
 | |
|                bytestream_get_le16(&edata_ptr));  //Dupe of coding mode
 | |
|         frame_factor = bytestream_get_le16(&edata_ptr);  // Unknown always 1
 | |
|         av_log(avctx, AV_LOG_DEBUG,"[12-13] %d\n",
 | |
|                bytestream_get_le16(&edata_ptr));  // Unknown always 0
 | |
| 
 | |
|         /* setup */
 | |
|         samples_per_frame    = SAMPLES_PER_FRAME * avctx->channels;
 | |
|         version              = 4;
 | |
|         delay                = 0x88E;
 | |
|         q->coding_mode       = q->coding_mode ? JOINT_STEREO : STEREO;
 | |
|         q->scrambled_stream  = 0;
 | |
| 
 | |
|         if (avctx->block_align !=  96 * avctx->channels * frame_factor &&
 | |
|             avctx->block_align != 152 * avctx->channels * frame_factor &&
 | |
|             avctx->block_align != 192 * avctx->channels * frame_factor) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Unknown frame/channel/frame_factor "
 | |
|                    "configuration %d/%d/%d\n", avctx->block_align,
 | |
|                    avctx->channels, frame_factor);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else if (avctx->extradata_size == 10) {
 | |
|         /* Parse the extradata, RM format. */
 | |
|         version                = bytestream_get_be32(&edata_ptr);
 | |
|         samples_per_frame      = bytestream_get_be16(&edata_ptr);
 | |
|         delay                  = bytestream_get_be16(&edata_ptr);
 | |
|         q->coding_mode         = bytestream_get_be16(&edata_ptr);
 | |
|         q->scrambled_stream    = 1;
 | |
| 
 | |
|     } else {
 | |
|         av_log(NULL, AV_LOG_ERROR, "Unknown extradata size %d.\n",
 | |
|                avctx->extradata_size);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* Check the extradata */
 | |
| 
 | |
|     if (version != 4) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Version %d != 4.\n", version);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (samples_per_frame != SAMPLES_PER_FRAME &&
 | |
|         samples_per_frame != SAMPLES_PER_FRAME * 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown amount of samples per frame %d.\n",
 | |
|                samples_per_frame);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (delay != 0x88E) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown amount of delay %x != 0x88E.\n",
 | |
|                delay);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (q->coding_mode == STEREO)
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Normal stereo detected.\n");
 | |
|     else if (q->coding_mode == JOINT_STEREO) {
 | |
|         if (avctx->channels != 2)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Joint stereo detected.\n");
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown channel coding mode %x!\n",
 | |
|                q->coding_mode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (avctx->block_align >= UINT_MAX / 2)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     q->decoded_bytes_buffer = av_mallocz(FFALIGN(avctx->block_align, 4) +
 | |
|                                          FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|     if (!q->decoded_bytes_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     /* initialize the MDCT transform */
 | |
|     if ((ret = ff_mdct_init(&q->mdct_ctx, 9, 1, 1.0 / 32768)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
 | |
|         av_freep(&q->decoded_bytes_buffer);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* init the joint-stereo decoding data */
 | |
|     q->weighting_delay[0] = 0;
 | |
|     q->weighting_delay[1] = 7;
 | |
|     q->weighting_delay[2] = 0;
 | |
|     q->weighting_delay[3] = 7;
 | |
|     q->weighting_delay[4] = 0;
 | |
|     q->weighting_delay[5] = 7;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         q->matrix_coeff_index_prev[i] = 3;
 | |
|         q->matrix_coeff_index_now[i]  = 3;
 | |
|         q->matrix_coeff_index_next[i] = 3;
 | |
|     }
 | |
| 
 | |
|     ff_atrac_init_gain_compensation(&q->gainc_ctx, 4, 3);
 | |
|     avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
| 
 | |
|     q->units = av_mallocz(sizeof(*q->units) * avctx->channels);
 | |
|     if (!q->units) {
 | |
|         atrac3_decode_close(avctx);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_atrac3_decoder = {
 | |
|     .name             = "atrac3",
 | |
|     .long_name        = NULL_IF_CONFIG_SMALL("ATRAC3 (Adaptive TRansform Acoustic Coding 3)"),
 | |
|     .type             = AVMEDIA_TYPE_AUDIO,
 | |
|     .id               = AV_CODEC_ID_ATRAC3,
 | |
|     .priv_data_size   = sizeof(ATRAC3Context),
 | |
|     .init             = atrac3_decode_init,
 | |
|     .init_static_data = atrac3_init_static_data,
 | |
|     .close            = atrac3_decode_close,
 | |
|     .decode           = atrac3_decode_frame,
 | |
|     .capabilities     = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
 | |
|     .sample_fmts      = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                         AV_SAMPLE_FMT_NONE },
 | |
| };
 |