1734 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1734 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AAC decoder
 | |
|  * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 | |
|  * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file libavcodec/aac.c
 | |
|  * AAC decoder
 | |
|  * @author Oded Shimon  ( ods15 ods15 dyndns org )
 | |
|  * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * supported tools
 | |
|  *
 | |
|  * Support?             Name
 | |
|  * N (code in SoC repo) gain control
 | |
|  * Y                    block switching
 | |
|  * Y                    window shapes - standard
 | |
|  * N                    window shapes - Low Delay
 | |
|  * Y                    filterbank - standard
 | |
|  * N (code in SoC repo) filterbank - Scalable Sample Rate
 | |
|  * Y                    Temporal Noise Shaping
 | |
|  * N (code in SoC repo) Long Term Prediction
 | |
|  * Y                    intensity stereo
 | |
|  * Y                    channel coupling
 | |
|  * Y                    frequency domain prediction
 | |
|  * Y                    Perceptual Noise Substitution
 | |
|  * Y                    Mid/Side stereo
 | |
|  * N                    Scalable Inverse AAC Quantization
 | |
|  * N                    Frequency Selective Switch
 | |
|  * N                    upsampling filter
 | |
|  * Y                    quantization & coding - AAC
 | |
|  * N                    quantization & coding - TwinVQ
 | |
|  * N                    quantization & coding - BSAC
 | |
|  * N                    AAC Error Resilience tools
 | |
|  * N                    Error Resilience payload syntax
 | |
|  * N                    Error Protection tool
 | |
|  * N                    CELP
 | |
|  * N                    Silence Compression
 | |
|  * N                    HVXC
 | |
|  * N                    HVXC 4kbits/s VR
 | |
|  * N                    Structured Audio tools
 | |
|  * N                    Structured Audio Sample Bank Format
 | |
|  * N                    MIDI
 | |
|  * N                    Harmonic and Individual Lines plus Noise
 | |
|  * N                    Text-To-Speech Interface
 | |
|  * N (in progress)      Spectral Band Replication
 | |
|  * Y (not in this code) Layer-1
 | |
|  * Y (not in this code) Layer-2
 | |
|  * Y (not in this code) Layer-3
 | |
|  * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 | |
|  * N (planned)          Parametric Stereo
 | |
|  * N                    Direct Stream Transfer
 | |
|  *
 | |
|  * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 | |
|  *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
 | |
|            Parametric Stereo.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| #include "lpc.h"
 | |
| 
 | |
| #include "aac.h"
 | |
| #include "aactab.h"
 | |
| #include "aacdectab.h"
 | |
| #include "mpeg4audio.h"
 | |
| #include "aac_parser.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <errno.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| union float754 { float f; uint32_t i; };
 | |
| 
 | |
| static VLC vlc_scalefactors;
 | |
| static VLC vlc_spectral[11];
 | |
| 
 | |
| 
 | |
| static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
 | |
|     static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
 | |
|     if (ac->tag_che_map[type][elem_id]) {
 | |
|         return ac->tag_che_map[type][elem_id];
 | |
|     }
 | |
|     if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
 | |
|         return NULL;
 | |
|     }
 | |
|     switch (ac->m4ac.chan_config) {
 | |
|         case 7:
 | |
|             if (ac->tags_mapped == 3 && type == TYPE_CPE) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
 | |
|             }
 | |
|         case 6:
 | |
|             /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
 | |
|                instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
 | |
|                encountered such a stream, transfer the LFE[0] element to SCE[1] */
 | |
|             if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
 | |
|             }
 | |
|         case 5:
 | |
|             if (ac->tags_mapped == 2 && type == TYPE_CPE) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
 | |
|             }
 | |
|         case 4:
 | |
|             if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
 | |
|             }
 | |
|         case 3:
 | |
|         case 2:
 | |
|             if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
 | |
|             } else if (ac->m4ac.chan_config == 2) {
 | |
|                 return NULL;
 | |
|             }
 | |
|         case 1:
 | |
|             if (!ac->tags_mapped && type == TYPE_SCE) {
 | |
|                 ac->tags_mapped++;
 | |
|                 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
 | |
|             }
 | |
|         default:
 | |
|             return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Configure output channel order based on the current program configuration element.
 | |
|  *
 | |
|  * @param   che_pos current channel position configuration
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
 | |
|         enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
 | |
|     AVCodecContext *avctx = ac->avccontext;
 | |
|     int i, type, channels = 0;
 | |
| 
 | |
|     memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
| 
 | |
|     /* Allocate or free elements depending on if they are in the
 | |
|      * current program configuration.
 | |
|      *
 | |
|      * Set up default 1:1 output mapping.
 | |
|      *
 | |
|      * For a 5.1 stream the output order will be:
 | |
|      *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
 | |
|      */
 | |
| 
 | |
|     for(i = 0; i < MAX_ELEM_ID; i++) {
 | |
|         for(type = 0; type < 4; type++) {
 | |
|             if(che_pos[type][i]) {
 | |
|                 if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
 | |
|                     return AVERROR(ENOMEM);
 | |
|                 if(type != TYPE_CCE) {
 | |
|                     ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
 | |
|                     if(type == TYPE_CPE) {
 | |
|                         ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
 | |
|                     }
 | |
|                 }
 | |
|             } else
 | |
|                 av_freep(&ac->che[type][i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (channel_config) {
 | |
|         memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
 | |
|         ac->tags_mapped = 0;
 | |
|     } else {
 | |
|         memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
 | |
|         ac->tags_mapped = 4*MAX_ELEM_ID;
 | |
|     }
 | |
| 
 | |
|     avctx->channels = channels;
 | |
| 
 | |
|     ac->output_configured = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 | |
|  *
 | |
|  * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 | |
|  * @param sce_map mono (Single Channel Element) map
 | |
|  * @param type speaker type/position for these channels
 | |
|  */
 | |
| static void decode_channel_map(enum ChannelPosition *cpe_map,
 | |
|         enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
 | |
|     while(n--) {
 | |
|         enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
 | |
|         map[get_bits(gb, 4)] = type;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode program configuration element; reference: table 4.2.
 | |
|  *
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
 | |
|         GetBitContext * gb) {
 | |
|     int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
 | |
| 
 | |
|     skip_bits(gb, 2);  // object_type
 | |
| 
 | |
|     sampling_index = get_bits(gb, 4);
 | |
|     if (ac->m4ac.sampling_index != sampling_index)
 | |
|         av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
 | |
| 
 | |
|     num_front       = get_bits(gb, 4);
 | |
|     num_side        = get_bits(gb, 4);
 | |
|     num_back        = get_bits(gb, 4);
 | |
|     num_lfe         = get_bits(gb, 2);
 | |
|     num_assoc_data  = get_bits(gb, 3);
 | |
|     num_cc          = get_bits(gb, 4);
 | |
| 
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 4); // mono_mixdown_tag
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 4); // stereo_mixdown_tag
 | |
| 
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
 | |
| 
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
 | |
|     decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
 | |
| 
 | |
|     skip_bits_long(gb, 4 * num_assoc_data);
 | |
| 
 | |
|     decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
 | |
| 
 | |
|     align_get_bits(gb);
 | |
| 
 | |
|     /* comment field, first byte is length */
 | |
|     skip_bits_long(gb, 8 * get_bits(gb, 8));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set up channel positions based on a default channel configuration
 | |
|  * as specified in table 1.17.
 | |
|  *
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
 | |
|         int channel_config)
 | |
| {
 | |
|     if(channel_config < 1 || channel_config > 7) {
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
 | |
|                channel_config);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* default channel configurations:
 | |
|      *
 | |
|      * 1ch : front center (mono)
 | |
|      * 2ch : L + R (stereo)
 | |
|      * 3ch : front center + L + R
 | |
|      * 4ch : front center + L + R + back center
 | |
|      * 5ch : front center + L + R + back stereo
 | |
|      * 6ch : front center + L + R + back stereo + LFE
 | |
|      * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
 | |
|      */
 | |
| 
 | |
|     if(channel_config != 2)
 | |
|         new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
 | |
|     if(channel_config > 1)
 | |
|         new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
 | |
|     if(channel_config == 4)
 | |
|         new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
 | |
|     if(channel_config > 4)
 | |
|         new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
 | |
|                                  = AAC_CHANNEL_BACK;  // back stereo
 | |
|     if(channel_config > 5)
 | |
|         new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
 | |
|     if(channel_config == 7)
 | |
|         new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode GA "General Audio" specific configuration; reference: table 4.1.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
 | |
|     enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|     int extension_flag, ret;
 | |
| 
 | |
|     if(get_bits1(gb)) {  // frameLengthFlag
 | |
|         av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb))       // dependsOnCoreCoder
 | |
|         skip_bits(gb, 14);   // coreCoderDelay
 | |
|     extension_flag = get_bits1(gb);
 | |
| 
 | |
|     if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
 | |
|        ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
 | |
|         skip_bits(gb, 3);     // layerNr
 | |
| 
 | |
|     memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|     if (channel_config == 0) {
 | |
|         skip_bits(gb, 4);  // element_instance_tag
 | |
|         if((ret = decode_pce(ac, new_che_pos, gb)))
 | |
|             return ret;
 | |
|     } else {
 | |
|         if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
 | |
|             return ret;
 | |
|     }
 | |
|     if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
 | |
|         return ret;
 | |
| 
 | |
|     if (extension_flag) {
 | |
|         switch (ac->m4ac.object_type) {
 | |
|             case AOT_ER_BSAC:
 | |
|                 skip_bits(gb, 5);    // numOfSubFrame
 | |
|                 skip_bits(gb, 11);   // layer_length
 | |
|                 break;
 | |
|             case AOT_ER_AAC_LC:
 | |
|             case AOT_ER_AAC_LTP:
 | |
|             case AOT_ER_AAC_SCALABLE:
 | |
|             case AOT_ER_AAC_LD:
 | |
|                 skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
 | |
|                                     * aacScalefactorDataResilienceFlag
 | |
|                                     * aacSpectralDataResilienceFlag
 | |
|                                     */
 | |
|                 break;
 | |
|         }
 | |
|         skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode audio specific configuration; reference: table 1.13.
 | |
|  *
 | |
|  * @param   data        pointer to AVCodecContext extradata
 | |
|  * @param   data_size   size of AVCCodecContext extradata
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
 | |
|     GetBitContext gb;
 | |
|     int i;
 | |
| 
 | |
|     init_get_bits(&gb, data, data_size * 8);
 | |
| 
 | |
|     if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
 | |
|         return -1;
 | |
|     if(ac->m4ac.sampling_index > 12) {
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     skip_bits_long(&gb, i);
 | |
| 
 | |
|     switch (ac->m4ac.object_type) {
 | |
|     case AOT_AAC_MAIN:
 | |
|     case AOT_AAC_LC:
 | |
|         if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
 | |
|             return -1;
 | |
|         break;
 | |
|     default:
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
 | |
|                ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * linear congruential pseudorandom number generator
 | |
|  *
 | |
|  * @param   previous_val    pointer to the current state of the generator
 | |
|  *
 | |
|  * @return  Returns a 32-bit pseudorandom integer
 | |
|  */
 | |
| static av_always_inline int lcg_random(int previous_val) {
 | |
|     return previous_val * 1664525 + 1013904223;
 | |
| }
 | |
| 
 | |
| static void reset_predict_state(PredictorState * ps) {
 | |
|     ps->r0 = 0.0f;
 | |
|     ps->r1 = 0.0f;
 | |
|     ps->cor0 = 0.0f;
 | |
|     ps->cor1 = 0.0f;
 | |
|     ps->var0 = 1.0f;
 | |
|     ps->var1 = 1.0f;
 | |
| }
 | |
| 
 | |
| static void reset_all_predictors(PredictorState * ps) {
 | |
|     int i;
 | |
|     for (i = 0; i < MAX_PREDICTORS; i++)
 | |
|         reset_predict_state(&ps[i]);
 | |
| }
 | |
| 
 | |
| static void reset_predictor_group(PredictorState * ps, int group_num) {
 | |
|     int i;
 | |
|     for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
 | |
|         reset_predict_state(&ps[i]);
 | |
| }
 | |
| 
 | |
| static av_cold int aac_decode_init(AVCodecContext * avccontext) {
 | |
|     AACContext * ac = avccontext->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     ac->avccontext = avccontext;
 | |
| 
 | |
|     if (avccontext->extradata_size > 0) {
 | |
|         if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
 | |
|             return -1;
 | |
|         avccontext->sample_rate = ac->m4ac.sample_rate;
 | |
|     } else if (avccontext->channels > 0) {
 | |
|         ac->m4ac.sample_rate = avccontext->sample_rate;
 | |
|     }
 | |
| 
 | |
|     avccontext->sample_fmt  = SAMPLE_FMT_S16;
 | |
|     avccontext->frame_size  = 1024;
 | |
| 
 | |
|     AAC_INIT_VLC_STATIC( 0, 144);
 | |
|     AAC_INIT_VLC_STATIC( 1, 114);
 | |
|     AAC_INIT_VLC_STATIC( 2, 188);
 | |
|     AAC_INIT_VLC_STATIC( 3, 180);
 | |
|     AAC_INIT_VLC_STATIC( 4, 172);
 | |
|     AAC_INIT_VLC_STATIC( 5, 140);
 | |
|     AAC_INIT_VLC_STATIC( 6, 168);
 | |
|     AAC_INIT_VLC_STATIC( 7, 114);
 | |
|     AAC_INIT_VLC_STATIC( 8, 262);
 | |
|     AAC_INIT_VLC_STATIC( 9, 248);
 | |
|     AAC_INIT_VLC_STATIC(10, 384);
 | |
| 
 | |
|     dsputil_init(&ac->dsp, avccontext);
 | |
| 
 | |
|     ac->random_state = 0x1f2e3d4c;
 | |
| 
 | |
|     // -1024 - Compensate wrong IMDCT method.
 | |
|     // 32768 - Required to scale values to the correct range for the bias method
 | |
|     //         for float to int16 conversion.
 | |
| 
 | |
|     if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
 | |
|         ac->add_bias = 385.0f;
 | |
|         ac->sf_scale = 1. / (-1024. * 32768.);
 | |
|         ac->sf_offset = 0;
 | |
|     } else {
 | |
|         ac->add_bias = 0.0f;
 | |
|         ac->sf_scale = 1. / -1024.;
 | |
|         ac->sf_offset = 60;
 | |
|     }
 | |
| 
 | |
| #if !CONFIG_HARDCODED_TABLES
 | |
|     for (i = 0; i < 428; i++)
 | |
|         ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
 | |
| #endif /* CONFIG_HARDCODED_TABLES */
 | |
| 
 | |
|     INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
 | |
|         ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
 | |
|         ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
 | |
|         352);
 | |
| 
 | |
|     ff_mdct_init(&ac->mdct, 11, 1, 1.0);
 | |
|     ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
 | |
|     // window initialization
 | |
|     ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
 | |
|     ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
 | |
|     ff_sine_window_init(ff_sine_1024, 1024);
 | |
|     ff_sine_window_init(ff_sine_128, 128);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Skip data_stream_element; reference: table 4.10.
 | |
|  */
 | |
| static void skip_data_stream_element(GetBitContext * gb) {
 | |
|     int byte_align = get_bits1(gb);
 | |
|     int count = get_bits(gb, 8);
 | |
|     if (count == 255)
 | |
|         count += get_bits(gb, 8);
 | |
|     if (byte_align)
 | |
|         align_get_bits(gb);
 | |
|     skip_bits_long(gb, 8 * count);
 | |
| }
 | |
| 
 | |
| static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
 | |
|     int sfb;
 | |
|     if (get_bits1(gb)) {
 | |
|         ics->predictor_reset_group = get_bits(gb, 5);
 | |
|         if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
 | |
|             av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
 | |
|         ics->prediction_used[sfb] = get_bits1(gb);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Individual Channel Stream info; reference: table 4.6.
 | |
|  *
 | |
|  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 | |
|  */
 | |
| static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
 | |
|     if (get_bits1(gb)) {
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
 | |
|         memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|         return -1;
 | |
|     }
 | |
|     ics->window_sequence[1] = ics->window_sequence[0];
 | |
|     ics->window_sequence[0] = get_bits(gb, 2);
 | |
|     ics->use_kb_window[1] = ics->use_kb_window[0];
 | |
|     ics->use_kb_window[0] = get_bits1(gb);
 | |
|     ics->num_window_groups = 1;
 | |
|     ics->group_len[0] = 1;
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         int i;
 | |
|         ics->max_sfb = get_bits(gb, 4);
 | |
|         for (i = 0; i < 7; i++) {
 | |
|             if (get_bits1(gb)) {
 | |
|                 ics->group_len[ics->num_window_groups-1]++;
 | |
|             } else {
 | |
|                 ics->num_window_groups++;
 | |
|                 ics->group_len[ics->num_window_groups-1] = 1;
 | |
|             }
 | |
|         }
 | |
|         ics->num_windows   = 8;
 | |
|         ics->swb_offset    =    ff_swb_offset_128[ac->m4ac.sampling_index];
 | |
|         ics->num_swb       =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
 | |
|         ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
 | |
|         ics->predictor_present = 0;
 | |
|     } else {
 | |
|         ics->max_sfb       = get_bits(gb, 6);
 | |
|         ics->num_windows   = 1;
 | |
|         ics->swb_offset    =    ff_swb_offset_1024[ac->m4ac.sampling_index];
 | |
|         ics->num_swb       =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
 | |
|         ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
 | |
|         ics->predictor_present = get_bits1(gb);
 | |
|         ics->predictor_reset_group = 0;
 | |
|         if (ics->predictor_present) {
 | |
|             if (ac->m4ac.object_type == AOT_AAC_MAIN) {
 | |
|                 if (decode_prediction(ac, ics, gb)) {
 | |
|                     memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                     return -1;
 | |
|                 }
 | |
|             } else if (ac->m4ac.object_type == AOT_AAC_LC) {
 | |
|                 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
 | |
|                 memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                 return -1;
 | |
|             } else {
 | |
|                 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
 | |
|                 memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(ics->max_sfb > ics->num_swb) {
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|             "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
 | |
|             ics->max_sfb, ics->num_swb);
 | |
|         memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode band types (section_data payload); reference: table 4.46.
 | |
|  *
 | |
|  * @param   band_type           array of the used band type
 | |
|  * @param   band_type_run_end   array of the last scalefactor band of a band type run
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_band_types(AACContext * ac, enum BandType band_type[120],
 | |
|         int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
 | |
|     int g, idx = 0;
 | |
|     const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         int k = 0;
 | |
|         while (k < ics->max_sfb) {
 | |
|             uint8_t sect_len = k;
 | |
|             int sect_len_incr;
 | |
|             int sect_band_type = get_bits(gb, 4);
 | |
|             if (sect_band_type == 12) {
 | |
|                 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
 | |
|                 sect_len += sect_len_incr;
 | |
|             sect_len += sect_len_incr;
 | |
|             if (sect_len > ics->max_sfb) {
 | |
|                 av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                     "Number of bands (%d) exceeds limit (%d).\n",
 | |
|                     sect_len, ics->max_sfb);
 | |
|                 return -1;
 | |
|             }
 | |
|             for (; k < sect_len; k++) {
 | |
|                 band_type        [idx]   = sect_band_type;
 | |
|                 band_type_run_end[idx++] = sect_len;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode scalefactors; reference: table 4.47.
 | |
|  *
 | |
|  * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 | |
|  * @param   band_type           array of the used band type
 | |
|  * @param   band_type_run_end   array of the last scalefactor band of a band type run
 | |
|  * @param   sf                  array of scalefactors or intensity stereo positions
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
 | |
|         unsigned int global_gain, IndividualChannelStream * ics,
 | |
|         enum BandType band_type[120], int band_type_run_end[120]) {
 | |
|     const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
 | |
|     int g, i, idx = 0;
 | |
|     int offset[3] = { global_gain, global_gain - 90, 100 };
 | |
|     int noise_flag = 1;
 | |
|     static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb;) {
 | |
|             int run_end = band_type_run_end[idx];
 | |
|             if (band_type[idx] == ZERO_BT) {
 | |
|                 for(; i < run_end; i++, idx++)
 | |
|                     sf[idx] = 0.;
 | |
|             }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
 | |
|                 for(; i < run_end; i++, idx++) {
 | |
|                     offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if(offset[2] > 255U) {
 | |
|                         av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                             "%s (%d) out of range.\n", sf_str[2], offset[2]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
 | |
|                 }
 | |
|             }else if(band_type[idx] == NOISE_BT) {
 | |
|                 for(; i < run_end; i++, idx++) {
 | |
|                     if(noise_flag-- > 0)
 | |
|                         offset[1] += get_bits(gb, 9) - 256;
 | |
|                     else
 | |
|                         offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if(offset[1] > 255U) {
 | |
|                         av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                             "%s (%d) out of range.\n", sf_str[1], offset[1]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
 | |
|                 }
 | |
|             }else {
 | |
|                 for(; i < run_end; i++, idx++) {
 | |
|                     offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if(offset[0] > 255U) {
 | |
|                         av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                             "%s (%d) out of range.\n", sf_str[0], offset[0]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode pulse data; reference: table 4.7.
 | |
|  */
 | |
| static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
 | |
|     int i, pulse_swb;
 | |
|     pulse->num_pulse = get_bits(gb, 2) + 1;
 | |
|     pulse_swb        = get_bits(gb, 6);
 | |
|     if (pulse_swb >= num_swb)
 | |
|         return -1;
 | |
|     pulse->pos[0]    = swb_offset[pulse_swb];
 | |
|     pulse->pos[0]   += get_bits(gb, 5);
 | |
|     if (pulse->pos[0] > 1023)
 | |
|         return -1;
 | |
|     pulse->amp[0]    = get_bits(gb, 4);
 | |
|     for (i = 1; i < pulse->num_pulse; i++) {
 | |
|         pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
 | |
|         if (pulse->pos[i] > 1023)
 | |
|             return -1;
 | |
|         pulse->amp[i] = get_bits(gb, 4);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Temporal Noise Shaping data; reference: table 4.48.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
 | |
|         GetBitContext * gb, const IndividualChannelStream * ics) {
 | |
|     int w, filt, i, coef_len, coef_res, coef_compress;
 | |
|     const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
 | |
|     const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
 | |
|     for (w = 0; w < ics->num_windows; w++) {
 | |
|         if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
 | |
|             coef_res = get_bits1(gb);
 | |
| 
 | |
|             for (filt = 0; filt < tns->n_filt[w]; filt++) {
 | |
|                 int tmp2_idx;
 | |
|                 tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
 | |
| 
 | |
|                 if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
 | |
|                     av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
 | |
|                            tns->order[w][filt], tns_max_order);
 | |
|                     tns->order[w][filt] = 0;
 | |
|                     return -1;
 | |
|                 }
 | |
|                 if (tns->order[w][filt]) {
 | |
|                     tns->direction[w][filt] = get_bits1(gb);
 | |
|                     coef_compress = get_bits1(gb);
 | |
|                     coef_len = coef_res + 3 - coef_compress;
 | |
|                     tmp2_idx = 2*coef_compress + coef_res;
 | |
| 
 | |
|                     for (i = 0; i < tns->order[w][filt]; i++)
 | |
|                         tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Mid/Side data; reference: table 4.54.
 | |
|  *
 | |
|  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 | |
|  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 | |
|  *                      [3] reserved for scalable AAC
 | |
|  */
 | |
| static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
 | |
|         int ms_present) {
 | |
|     int idx;
 | |
|     if (ms_present == 1) {
 | |
|         for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
 | |
|             cpe->ms_mask[idx] = get_bits1(gb);
 | |
|     } else if (ms_present == 2) {
 | |
|         memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode spectral data; reference: table 4.50.
 | |
|  * Dequantize and scale spectral data; reference: 4.6.3.3.
 | |
|  *
 | |
|  * @param   coef            array of dequantized, scaled spectral data
 | |
|  * @param   sf              array of scalefactors or intensity stereo positions
 | |
|  * @param   pulse_present   set if pulses are present
 | |
|  * @param   pulse           pointer to pulse data struct
 | |
|  * @param   band_type       array of the used band type
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
 | |
|         int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
 | |
|     int i, k, g, idx = 0;
 | |
|     const int c = 1024/ics->num_windows;
 | |
|     const uint16_t * offsets = ics->swb_offset;
 | |
|     float *coef_base = coef;
 | |
|     static const float sign_lookup[] = { 1.0f, -1.0f };
 | |
| 
 | |
|     for (g = 0; g < ics->num_windows; g++)
 | |
|         memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
 | |
| 
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             const int cur_band_type = band_type[idx];
 | |
|             const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
 | |
|             const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
 | |
|             int group;
 | |
|             if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
 | |
|                 }
 | |
|             }else if (cur_band_type == NOISE_BT) {
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     float scale;
 | |
|                     float band_energy = 0;
 | |
|                     for (k = offsets[i]; k < offsets[i+1]; k++) {
 | |
|                         ac->random_state  = lcg_random(ac->random_state);
 | |
|                         coef[group*128+k] = ac->random_state;
 | |
|                         band_energy += coef[group*128+k]*coef[group*128+k];
 | |
|                     }
 | |
|                     scale = sf[idx] / sqrtf(band_energy);
 | |
|                     for (k = offsets[i]; k < offsets[i+1]; k++) {
 | |
|                         coef[group*128+k] *= scale;
 | |
|                     }
 | |
|                 }
 | |
|             }else {
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     for (k = offsets[i]; k < offsets[i+1]; k += dim) {
 | |
|                         const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
 | |
|                         const int coef_tmp_idx = (group << 7) + k;
 | |
|                         const float *vq_ptr;
 | |
|                         int j;
 | |
|                         if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
 | |
|                             av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                                 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
 | |
|                                 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
 | |
|                             return -1;
 | |
|                         }
 | |
|                         vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
 | |
|                         if (is_cb_unsigned) {
 | |
|                             if (vq_ptr[0]) coef[coef_tmp_idx    ] = sign_lookup[get_bits1(gb)];
 | |
|                             if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
 | |
|                             if (dim == 4) {
 | |
|                                 if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
 | |
|                                 if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
 | |
|                             }
 | |
|                             if (cur_band_type == ESC_BT) {
 | |
|                                 for (j = 0; j < 2; j++) {
 | |
|                                     if (vq_ptr[j] == 64.0f) {
 | |
|                                         int n = 4;
 | |
|                                         /* The total length of escape_sequence must be < 22 bits according
 | |
|                                            to the specification (i.e. max is 11111111110xxxxxxxxxx). */
 | |
|                                         while (get_bits1(gb) && n < 15) n++;
 | |
|                                         if(n == 15) {
 | |
|                                             av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
 | |
|                                             return -1;
 | |
|                                         }
 | |
|                                         n = (1<<n) + get_bits(gb, n);
 | |
|                                         coef[coef_tmp_idx + j] *= cbrtf(n) * n;
 | |
|                                     }else
 | |
|                                         coef[coef_tmp_idx + j] *= vq_ptr[j];
 | |
|                                 }
 | |
|                             }else
 | |
|                             {
 | |
|                                 coef[coef_tmp_idx    ] *= vq_ptr[0];
 | |
|                                 coef[coef_tmp_idx + 1] *= vq_ptr[1];
 | |
|                                 if (dim == 4) {
 | |
|                                     coef[coef_tmp_idx + 2] *= vq_ptr[2];
 | |
|                                     coef[coef_tmp_idx + 3] *= vq_ptr[3];
 | |
|                                 }
 | |
|                             }
 | |
|                         }else {
 | |
|                             coef[coef_tmp_idx    ] = vq_ptr[0];
 | |
|                             coef[coef_tmp_idx + 1] = vq_ptr[1];
 | |
|                             if (dim == 4) {
 | |
|                                 coef[coef_tmp_idx + 2] = vq_ptr[2];
 | |
|                                 coef[coef_tmp_idx + 3] = vq_ptr[3];
 | |
|                             }
 | |
|                         }
 | |
|                         coef[coef_tmp_idx    ] *= sf[idx];
 | |
|                         coef[coef_tmp_idx + 1] *= sf[idx];
 | |
|                         if (dim == 4) {
 | |
|                             coef[coef_tmp_idx + 2] *= sf[idx];
 | |
|                             coef[coef_tmp_idx + 3] *= sf[idx];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         coef += ics->group_len[g]<<7;
 | |
|     }
 | |
| 
 | |
|     if (pulse_present) {
 | |
|         idx = 0;
 | |
|         for(i = 0; i < pulse->num_pulse; i++){
 | |
|             float co  = coef_base[ pulse->pos[i] ];
 | |
|             while(offsets[idx + 1] <= pulse->pos[i])
 | |
|                 idx++;
 | |
|             if (band_type[idx] != NOISE_BT && sf[idx]) {
 | |
|                 float ico = -pulse->amp[i];
 | |
|                 if (co) {
 | |
|                     co /= sf[idx];
 | |
|                     ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
 | |
|                 }
 | |
|                 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_round(float pf) {
 | |
|     union float754 tmp;
 | |
|     tmp.f = pf;
 | |
|     tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
 | |
|     return tmp.f;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_even(float pf) {
 | |
|     union float754 tmp;
 | |
|     tmp.f = pf;
 | |
|     tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U;
 | |
|     return tmp.f;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_trunc(float pf) {
 | |
|     union float754 pun;
 | |
|     pun.f = pf;
 | |
|     pun.i &= 0xFFFF0000U;
 | |
|     return pun.f;
 | |
| }
 | |
| 
 | |
| static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
 | |
|     const float a     = 0.953125; // 61.0/64
 | |
|     const float alpha = 0.90625;  // 29.0/32
 | |
|     float e0, e1;
 | |
|     float pv;
 | |
|     float k1, k2;
 | |
| 
 | |
|     k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
 | |
|     k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
 | |
| 
 | |
|     pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
 | |
|     if (output_enable)
 | |
|         *coef += pv * ac->sf_scale;
 | |
| 
 | |
|     e0 = *coef / ac->sf_scale;
 | |
|     e1 = e0 - k1 * ps->r0;
 | |
| 
 | |
|     ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
 | |
|     ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
 | |
|     ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
 | |
|     ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
 | |
| 
 | |
|     ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
 | |
|     ps->r0 = flt16_trunc(a * e0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply AAC-Main style frequency domain prediction.
 | |
|  */
 | |
| static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
 | |
|     int sfb, k;
 | |
| 
 | |
|     if (!sce->ics.predictor_initialized) {
 | |
|         reset_all_predictors(sce->predictor_state);
 | |
|         sce->ics.predictor_initialized = 1;
 | |
|     }
 | |
| 
 | |
|     if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
 | |
|         for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
 | |
|             for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
 | |
|                 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
 | |
|                     sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
 | |
|             }
 | |
|         }
 | |
|         if (sce->ics.predictor_reset_group)
 | |
|             reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
 | |
|     } else
 | |
|         reset_all_predictors(sce->predictor_state);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode an individual_channel_stream payload; reference: table 4.44.
 | |
|  *
 | |
|  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 | |
|  * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
 | |
|     Pulse pulse;
 | |
|     TemporalNoiseShaping * tns = &sce->tns;
 | |
|     IndividualChannelStream * ics = &sce->ics;
 | |
|     float * out = sce->coeffs;
 | |
|     int global_gain, pulse_present = 0;
 | |
| 
 | |
|     /* This assignment is to silence a GCC warning about the variable being used
 | |
|      * uninitialized when in fact it always is.
 | |
|      */
 | |
|     pulse.num_pulse = 0;
 | |
| 
 | |
|     global_gain = get_bits(gb, 8);
 | |
| 
 | |
|     if (!common_window && !scale_flag) {
 | |
|         if (decode_ics_info(ac, ics, gb, 0) < 0)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
 | |
|         return -1;
 | |
|     if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     pulse_present = 0;
 | |
|     if (!scale_flag) {
 | |
|         if ((pulse_present = get_bits1(gb))) {
 | |
|             if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|                 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
 | |
|                 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
 | |
|             return -1;
 | |
|         if (get_bits1(gb)) {
 | |
|             av_log_missing_feature(ac->avccontext, "SSR", 1);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
 | |
|         apply_prediction(ac, sce);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 | |
|  */
 | |
| static void apply_mid_side_stereo(ChannelElement * cpe) {
 | |
|     const IndividualChannelStream * ics = &cpe->ch[0].ics;
 | |
|     float *ch0 = cpe->ch[0].coeffs;
 | |
|     float *ch1 = cpe->ch[1].coeffs;
 | |
|     int g, i, k, group, idx = 0;
 | |
|     const uint16_t * offsets = ics->swb_offset;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             if (cpe->ms_mask[idx] &&
 | |
|                 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     for (k = offsets[i]; k < offsets[i+1]; k++) {
 | |
|                         float tmp = ch0[group*128 + k] - ch1[group*128 + k];
 | |
|                         ch0[group*128 + k] += ch1[group*128 + k];
 | |
|                         ch1[group*128 + k] = tmp;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ch0 += ics->group_len[g]*128;
 | |
|         ch1 += ics->group_len[g]*128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intensity stereo decoding; reference: 4.6.8.2.3
 | |
|  *
 | |
|  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 | |
|  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 | |
|  *                      [3] reserved for scalable AAC
 | |
|  */
 | |
| static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
 | |
|     const IndividualChannelStream * ics = &cpe->ch[1].ics;
 | |
|     SingleChannelElement * sce1 = &cpe->ch[1];
 | |
|     float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
 | |
|     const uint16_t * offsets = ics->swb_offset;
 | |
|     int g, group, i, k, idx = 0;
 | |
|     int c;
 | |
|     float scale;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb;) {
 | |
|             if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
 | |
|                 const int bt_run_end = sce1->band_type_run_end[idx];
 | |
|                 for (; i < bt_run_end; i++, idx++) {
 | |
|                     c = -1 + 2 * (sce1->band_type[idx] - 14);
 | |
|                     if (ms_present)
 | |
|                         c *= 1 - 2 * cpe->ms_mask[idx];
 | |
|                     scale = c * sce1->sf[idx];
 | |
|                     for (group = 0; group < ics->group_len[g]; group++)
 | |
|                         for (k = offsets[i]; k < offsets[i+1]; k++)
 | |
|                             coef1[group*128 + k] = scale * coef0[group*128 + k];
 | |
|                 }
 | |
|             } else {
 | |
|                 int bt_run_end = sce1->band_type_run_end[idx];
 | |
|                 idx += bt_run_end - i;
 | |
|                 i    = bt_run_end;
 | |
|             }
 | |
|         }
 | |
|         coef0 += ics->group_len[g]*128;
 | |
|         coef1 += ics->group_len[g]*128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a channel_pair_element; reference: table 4.4.
 | |
|  *
 | |
|  * @param   elem_id Identifies the instance of a syntax element.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
 | |
|     int i, ret, common_window, ms_present = 0;
 | |
| 
 | |
|     common_window = get_bits1(gb);
 | |
|     if (common_window) {
 | |
|         if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
 | |
|             return -1;
 | |
|         i = cpe->ch[1].ics.use_kb_window[0];
 | |
|         cpe->ch[1].ics = cpe->ch[0].ics;
 | |
|         cpe->ch[1].ics.use_kb_window[1] = i;
 | |
|         ms_present = get_bits(gb, 2);
 | |
|         if(ms_present == 3) {
 | |
|             av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
 | |
|             return -1;
 | |
|         } else if(ms_present)
 | |
|             decode_mid_side_stereo(cpe, gb, ms_present);
 | |
|     }
 | |
|     if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
 | |
|         return ret;
 | |
|     if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
 | |
|         return ret;
 | |
| 
 | |
|     if (common_window) {
 | |
|         if (ms_present)
 | |
|             apply_mid_side_stereo(cpe);
 | |
|         if (ac->m4ac.object_type == AOT_AAC_MAIN) {
 | |
|             apply_prediction(ac, &cpe->ch[0]);
 | |
|             apply_prediction(ac, &cpe->ch[1]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     apply_intensity_stereo(cpe, ms_present);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode coupling_channel_element; reference: table 4.8.
 | |
|  *
 | |
|  * @param   elem_id Identifies the instance of a syntax element.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
 | |
|     int num_gain = 0;
 | |
|     int c, g, sfb, ret;
 | |
|     int sign;
 | |
|     float scale;
 | |
|     SingleChannelElement * sce = &che->ch[0];
 | |
|     ChannelCoupling * coup     = &che->coup;
 | |
| 
 | |
|     coup->coupling_point = 2*get_bits1(gb);
 | |
|     coup->num_coupled = get_bits(gb, 3);
 | |
|     for (c = 0; c <= coup->num_coupled; c++) {
 | |
|         num_gain++;
 | |
|         coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
 | |
|         coup->id_select[c] = get_bits(gb, 4);
 | |
|         if (coup->type[c] == TYPE_CPE) {
 | |
|             coup->ch_select[c] = get_bits(gb, 2);
 | |
|             if (coup->ch_select[c] == 3)
 | |
|                 num_gain++;
 | |
|         } else
 | |
|             coup->ch_select[c] = 2;
 | |
|     }
 | |
|     coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);
 | |
| 
 | |
|     sign = get_bits(gb, 1);
 | |
|     scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
 | |
| 
 | |
|     if ((ret = decode_ics(ac, sce, gb, 0, 0)))
 | |
|         return ret;
 | |
| 
 | |
|     for (c = 0; c < num_gain; c++) {
 | |
|         int idx = 0;
 | |
|         int cge = 1;
 | |
|         int gain = 0;
 | |
|         float gain_cache = 1.;
 | |
|         if (c) {
 | |
|             cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
 | |
|             gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
 | |
|             gain_cache = pow(scale, -gain);
 | |
|         }
 | |
|         if (coup->coupling_point == AFTER_IMDCT) {
 | |
|             coup->gain[c][0] = gain_cache;
 | |
|         } else {
 | |
|             for (g = 0; g < sce->ics.num_window_groups; g++) {
 | |
|                 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
 | |
|                     if (sce->band_type[idx] != ZERO_BT) {
 | |
|                         if (!cge) {
 | |
|                             int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                                 if (t) {
 | |
|                                 int s = 1;
 | |
|                                 t = gain += t;
 | |
|                                 if (sign) {
 | |
|                                     s  -= 2 * (t & 0x1);
 | |
|                                     t >>= 1;
 | |
|                                 }
 | |
|                                 gain_cache = pow(scale, -t) * s;
 | |
|                             }
 | |
|                         }
 | |
|                         coup->gain[c][idx] = gain_cache;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Spectral Band Replication extension data; reference: table 4.55.
 | |
|  *
 | |
|  * @param   crc flag indicating the presence of CRC checksum
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed from the TYPE_FIL element.
 | |
|  */
 | |
| static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
 | |
|     // TODO : sbr_extension implementation
 | |
|     av_log_missing_feature(ac->avccontext, "SBR", 0);
 | |
|     skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
 | |
|     return cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed.
 | |
|  */
 | |
| static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
 | |
|     int i;
 | |
|     int num_excl_chan = 0;
 | |
| 
 | |
|     do {
 | |
|         for (i = 0; i < 7; i++)
 | |
|             che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
 | |
|     } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
 | |
| 
 | |
|     return num_excl_chan / 7;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode dynamic range information; reference: table 4.52.
 | |
|  *
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed.
 | |
|  */
 | |
| static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
 | |
|     int n = 1;
 | |
|     int drc_num_bands = 1;
 | |
|     int i;
 | |
| 
 | |
|     /* pce_tag_present? */
 | |
|     if(get_bits1(gb)) {
 | |
|         che_drc->pce_instance_tag  = get_bits(gb, 4);
 | |
|         skip_bits(gb, 4); // tag_reserved_bits
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     /* excluded_chns_present? */
 | |
|     if(get_bits1(gb)) {
 | |
|         n += decode_drc_channel_exclusions(che_drc, gb);
 | |
|     }
 | |
| 
 | |
|     /* drc_bands_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         che_drc->band_incr            = get_bits(gb, 4);
 | |
|         che_drc->interpolation_scheme = get_bits(gb, 4);
 | |
|         n++;
 | |
|         drc_num_bands += che_drc->band_incr;
 | |
|         for (i = 0; i < drc_num_bands; i++) {
 | |
|             che_drc->band_top[i] = get_bits(gb, 8);
 | |
|             n++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* prog_ref_level_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         che_drc->prog_ref_level = get_bits(gb, 7);
 | |
|         skip_bits1(gb); // prog_ref_level_reserved_bits
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < drc_num_bands; i++) {
 | |
|         che_drc->dyn_rng_sgn[i] = get_bits1(gb);
 | |
|         che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode extension data (incomplete); reference: table 4.51.
 | |
|  *
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return Returns number of bytes consumed
 | |
|  */
 | |
| static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
 | |
|     int crc_flag = 0;
 | |
|     int res = cnt;
 | |
|     switch (get_bits(gb, 4)) { // extension type
 | |
|         case EXT_SBR_DATA_CRC:
 | |
|             crc_flag++;
 | |
|         case EXT_SBR_DATA:
 | |
|             res = decode_sbr_extension(ac, gb, crc_flag, cnt);
 | |
|             break;
 | |
|         case EXT_DYNAMIC_RANGE:
 | |
|             res = decode_dynamic_range(&ac->che_drc, gb, cnt);
 | |
|             break;
 | |
|         case EXT_FILL:
 | |
|         case EXT_FILL_DATA:
 | |
|         case EXT_DATA_ELEMENT:
 | |
|         default:
 | |
|             skip_bits_long(gb, 8*cnt - 4);
 | |
|             break;
 | |
|     };
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 | |
|  *
 | |
|  * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 | |
|  * @param   coef    spectral coefficients
 | |
|  */
 | |
| static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
 | |
|     const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
 | |
|     int w, filt, m, i;
 | |
|     int bottom, top, order, start, end, size, inc;
 | |
|     float lpc[TNS_MAX_ORDER];
 | |
| 
 | |
|     for (w = 0; w < ics->num_windows; w++) {
 | |
|         bottom = ics->num_swb;
 | |
|         for (filt = 0; filt < tns->n_filt[w]; filt++) {
 | |
|             top    = bottom;
 | |
|             bottom = FFMAX(0, top - tns->length[w][filt]);
 | |
|             order  = tns->order[w][filt];
 | |
|             if (order == 0)
 | |
|                 continue;
 | |
| 
 | |
|             // tns_decode_coef
 | |
|             compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
 | |
| 
 | |
|             start = ics->swb_offset[FFMIN(bottom, mmm)];
 | |
|             end   = ics->swb_offset[FFMIN(   top, mmm)];
 | |
|             if ((size = end - start) <= 0)
 | |
|                 continue;
 | |
|             if (tns->direction[w][filt]) {
 | |
|                 inc = -1; start = end - 1;
 | |
|             } else {
 | |
|                 inc = 1;
 | |
|             }
 | |
|             start += w * 128;
 | |
| 
 | |
|             // ar filter
 | |
|             for (m = 0; m < size; m++, start += inc)
 | |
|                 for (i = 1; i <= FFMIN(m, order); i++)
 | |
|                     coef[start] -= coef[start - i*inc] * lpc[i-1];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Conduct IMDCT and windowing.
 | |
|  */
 | |
| static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
 | |
|     IndividualChannelStream * ics = &sce->ics;
 | |
|     float * in = sce->coeffs;
 | |
|     float * out = sce->ret;
 | |
|     float * saved = sce->saved;
 | |
|     const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
 | |
|     const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
 | |
|     const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
 | |
|     float * buf = ac->buf_mdct;
 | |
|     float * temp = ac->temp;
 | |
|     int i;
 | |
| 
 | |
|     // imdct
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
 | |
|             av_log(ac->avccontext, AV_LOG_WARNING,
 | |
|                    "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
 | |
|                    "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
 | |
|         for (i = 0; i < 1024; i += 128)
 | |
|             ff_imdct_half(&ac->mdct_small, buf + i, in + i);
 | |
|     } else
 | |
|         ff_imdct_half(&ac->mdct, buf, in);
 | |
| 
 | |
|     /* window overlapping
 | |
|      * NOTE: To simplify the overlapping code, all 'meaningless' short to long
 | |
|      * and long to short transitions are considered to be short to short
 | |
|      * transitions. This leaves just two cases (long to long and short to short)
 | |
|      * with a little special sauce for EIGHT_SHORT_SEQUENCE.
 | |
|      */
 | |
|     if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
 | |
|         (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
 | |
|         ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
 | |
|     } else {
 | |
|         for (i = 0; i < 448; i++)
 | |
|             out[i] = saved[i] + ac->add_bias;
 | |
| 
 | |
|         if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
 | |
|             ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
 | |
|             memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
 | |
|         } else {
 | |
|             ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
 | |
|             for (i = 576; i < 1024; i++)
 | |
|                 out[i] = buf[i-512] + ac->add_bias;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // buffer update
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         for (i = 0; i < 64; i++)
 | |
|             saved[i] = temp[64 + i] - ac->add_bias;
 | |
|         ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
 | |
|         ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
 | |
|         ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
 | |
|         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
 | |
|     } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
 | |
|         memcpy(                    saved,       buf + 512,        448 * sizeof(float));
 | |
|         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
 | |
|     } else { // LONG_STOP or ONLY_LONG
 | |
|         memcpy(                    saved,       buf + 512,        512 * sizeof(float));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply dependent channel coupling (applied before IMDCT).
 | |
|  *
 | |
|  * @param   index   index into coupling gain array
 | |
|  */
 | |
| static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
 | |
|     IndividualChannelStream * ics = &cce->ch[0].ics;
 | |
|     const uint16_t * offsets = ics->swb_offset;
 | |
|     float * dest = target->coeffs;
 | |
|     const float * src = cce->ch[0].coeffs;
 | |
|     int g, i, group, k, idx = 0;
 | |
|     if(ac->m4ac.object_type == AOT_AAC_LTP) {
 | |
|         av_log(ac->avccontext, AV_LOG_ERROR,
 | |
|                "Dependent coupling is not supported together with LTP\n");
 | |
|         return;
 | |
|     }
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             if (cce->ch[0].band_type[idx] != ZERO_BT) {
 | |
|                 const float gain = cce->coup.gain[index][idx];
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     for (k = offsets[i]; k < offsets[i+1]; k++) {
 | |
|                         // XXX dsputil-ize
 | |
|                         dest[group*128+k] += gain * src[group*128+k];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         dest += ics->group_len[g]*128;
 | |
|         src  += ics->group_len[g]*128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply independent channel coupling (applied after IMDCT).
 | |
|  *
 | |
|  * @param   index   index into coupling gain array
 | |
|  */
 | |
| static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
 | |
|     int i;
 | |
|     const float gain = cce->coup.gain[index][0];
 | |
|     const float bias = ac->add_bias;
 | |
|     const float* src = cce->ch[0].ret;
 | |
|     float* dest = target->ret;
 | |
| 
 | |
|     for (i = 0; i < 1024; i++)
 | |
|         dest[i] += gain * (src[i] - bias);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * channel coupling transformation interface
 | |
|  *
 | |
|  * @param   index   index into coupling gain array
 | |
|  * @param   apply_coupling_method   pointer to (in)dependent coupling function
 | |
|  */
 | |
| static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
 | |
|         enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
 | |
|         void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
 | |
| {
 | |
|     int i, c;
 | |
| 
 | |
|     for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|         ChannelElement *cce = ac->che[TYPE_CCE][i];
 | |
|         int index = 0;
 | |
| 
 | |
|         if (cce && cce->coup.coupling_point == coupling_point) {
 | |
|             ChannelCoupling * coup = &cce->coup;
 | |
| 
 | |
|             for (c = 0; c <= coup->num_coupled; c++) {
 | |
|                 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
 | |
|                     if (coup->ch_select[c] != 1) {
 | |
|                         apply_coupling_method(ac, &cc->ch[0], cce, index);
 | |
|                         if (coup->ch_select[c] != 0)
 | |
|                             index++;
 | |
|                     }
 | |
|                     if (coup->ch_select[c] != 2)
 | |
|                         apply_coupling_method(ac, &cc->ch[1], cce, index++);
 | |
|                 } else
 | |
|                     index += 1 + (coup->ch_select[c] == 3);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert spectral data to float samples, applying all supported tools as appropriate.
 | |
|  */
 | |
| static void spectral_to_sample(AACContext * ac) {
 | |
|     int i, type;
 | |
|     for(type = 3; type >= 0; type--) {
 | |
|         for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|             ChannelElement *che = ac->che[type][i];
 | |
|             if(che) {
 | |
|                 if(type <= TYPE_CPE)
 | |
|                     apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
 | |
|                 if(che->ch[0].tns.present)
 | |
|                     apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
 | |
|                 if(che->ch[1].tns.present)
 | |
|                     apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
 | |
|                 if(type <= TYPE_CPE)
 | |
|                     apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
 | |
|                 if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
 | |
|                     imdct_and_windowing(ac, &che->ch[0]);
 | |
|                 if(type == TYPE_CPE)
 | |
|                     imdct_and_windowing(ac, &che->ch[1]);
 | |
|                 if(type <= TYPE_CCE)
 | |
|                     apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
 | |
| 
 | |
|     int size;
 | |
|     AACADTSHeaderInfo hdr_info;
 | |
| 
 | |
|     size = ff_aac_parse_header(gb, &hdr_info);
 | |
|     if (size > 0) {
 | |
|         if (!ac->output_configured && hdr_info.chan_config) {
 | |
|             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|             ac->m4ac.chan_config = hdr_info.chan_config;
 | |
|             if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
 | |
|                 return -7;
 | |
|             if (output_configure(ac, ac->che_pos, new_che_pos, 1))
 | |
|                 return -7;
 | |
|         }
 | |
|         ac->m4ac.sample_rate     = hdr_info.sample_rate;
 | |
|         ac->m4ac.sampling_index  = hdr_info.sampling_index;
 | |
|         ac->m4ac.object_type     = hdr_info.object_type;
 | |
|         if (hdr_info.num_aac_frames == 1) {
 | |
|             if (!hdr_info.crc_absent)
 | |
|                 skip_bits(gb, 16);
 | |
|         } else {
 | |
|             av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     AACContext * ac = avccontext->priv_data;
 | |
|     ChannelElement * che = NULL;
 | |
|     GetBitContext gb;
 | |
|     enum RawDataBlockType elem_type;
 | |
|     int err, elem_id, data_size_tmp;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size*8);
 | |
| 
 | |
|     if (show_bits(&gb, 12) == 0xfff) {
 | |
|         if (parse_adts_frame_header(ac, &gb) < 0) {
 | |
|             av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
 | |
|             return -1;
 | |
|         }
 | |
|         if (ac->m4ac.sampling_index > 12) {
 | |
|             av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // parse
 | |
|     while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
 | |
|         elem_id = get_bits(&gb, 4);
 | |
| 
 | |
|         if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
 | |
|             av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         switch (elem_type) {
 | |
| 
 | |
|         case TYPE_SCE:
 | |
|             err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_CPE:
 | |
|             err = decode_cpe(ac, &gb, che);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_CCE:
 | |
|             err = decode_cce(ac, &gb, che);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_LFE:
 | |
|             err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_DSE:
 | |
|             skip_data_stream_element(&gb);
 | |
|             err = 0;
 | |
|             break;
 | |
| 
 | |
|         case TYPE_PCE:
 | |
|         {
 | |
|             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|             if((err = decode_pce(ac, new_che_pos, &gb)))
 | |
|                 break;
 | |
|             if (ac->output_configured)
 | |
|                 av_log(avccontext, AV_LOG_ERROR,
 | |
|                        "Not evaluating a further program_config_element as this construct is dubious at best.\n");
 | |
|             else
 | |
|                 err = output_configure(ac, ac->che_pos, new_che_pos, 0);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case TYPE_FIL:
 | |
|             if (elem_id == 15)
 | |
|                 elem_id += get_bits(&gb, 8) - 1;
 | |
|             while (elem_id > 0)
 | |
|                 elem_id -= decode_extension_payload(ac, &gb, elem_id);
 | |
|             err = 0; /* FIXME */
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             err = -1; /* should not happen, but keeps compiler happy */
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if(err)
 | |
|             return err;
 | |
|     }
 | |
| 
 | |
|     spectral_to_sample(ac);
 | |
| 
 | |
|     if (!ac->is_saved) {
 | |
|         ac->is_saved = 1;
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
 | |
|     if(*data_size < data_size_tmp) {
 | |
|         av_log(avccontext, AV_LOG_ERROR,
 | |
|                "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
 | |
|                *data_size, data_size_tmp);
 | |
|         return -1;
 | |
|     }
 | |
|     *data_size = data_size_tmp;
 | |
| 
 | |
|     ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| static av_cold int aac_decode_close(AVCodecContext * avccontext) {
 | |
|     AACContext * ac = avccontext->priv_data;
 | |
|     int i, type;
 | |
| 
 | |
|     for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|         for(type = 0; type < 4; type++)
 | |
|             av_freep(&ac->che[type][i]);
 | |
|     }
 | |
| 
 | |
|     ff_mdct_end(&ac->mdct);
 | |
|     ff_mdct_end(&ac->mdct_small);
 | |
|     return 0 ;
 | |
| }
 | |
| 
 | |
| AVCodec aac_decoder = {
 | |
|     "aac",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_AAC,
 | |
|     sizeof(AACContext),
 | |
|     aac_decode_init,
 | |
|     NULL,
 | |
|     aac_decode_close,
 | |
|     aac_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
 | |
|     .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
 | |
| };
 |