2563 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2563 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * MPEG Audio decoder
 | |
|  * Copyright (c) 2001, 2002 Fabrice Bellard
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file libavcodec/mpegaudiodec.c
 | |
|  * MPEG Audio decoder.
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| /*
 | |
|  * TODO:
 | |
|  *  - in low precision mode, use more 16 bit multiplies in synth filter
 | |
|  *  - test lsf / mpeg25 extensively.
 | |
|  */
 | |
| 
 | |
| #include "mpegaudio.h"
 | |
| #include "mpegaudiodecheader.h"
 | |
| 
 | |
| #include "mathops.h"
 | |
| 
 | |
| /* WARNING: only correct for posititive numbers */
 | |
| #define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
 | |
| #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
 | |
| 
 | |
| #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
 | |
| 
 | |
| /****************/
 | |
| 
 | |
| #define HEADER_SIZE 4
 | |
| 
 | |
| #include "mpegaudiodata.h"
 | |
| #include "mpegaudiodectab.h"
 | |
| 
 | |
| static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
 | |
| static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
 | |
| 
 | |
| /* vlc structure for decoding layer 3 huffman tables */
 | |
| static VLC huff_vlc[16];
 | |
| static VLC_TYPE huff_vlc_tables[
 | |
|   0+128+128+128+130+128+154+166+
 | |
|   142+204+190+170+542+460+662+414
 | |
|   ][2];
 | |
| static const int huff_vlc_tables_sizes[16] = {
 | |
|   0, 128, 128, 128, 130, 128, 154, 166,
 | |
|   142, 204, 190, 170, 542, 460, 662, 414
 | |
| };
 | |
| static VLC huff_quad_vlc[2];
 | |
| static VLC_TYPE huff_quad_vlc_tables[128+16][2];
 | |
| static const int huff_quad_vlc_tables_sizes[2] = {
 | |
|   128, 16
 | |
| };
 | |
| /* computed from band_size_long */
 | |
| static uint16_t band_index_long[9][23];
 | |
| #include "mpegaudio_tablegen.h"
 | |
| /* intensity stereo coef table */
 | |
| static int32_t is_table[2][16];
 | |
| static int32_t is_table_lsf[2][2][16];
 | |
| static int32_t csa_table[8][4];
 | |
| static float csa_table_float[8][4];
 | |
| static int32_t mdct_win[8][36];
 | |
| 
 | |
| /* lower 2 bits: modulo 3, higher bits: shift */
 | |
| static uint16_t scale_factor_modshift[64];
 | |
| /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
 | |
| static int32_t scale_factor_mult[15][3];
 | |
| /* mult table for layer 2 group quantization */
 | |
| 
 | |
| #define SCALE_GEN(v) \
 | |
| { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
 | |
| 
 | |
| static const int32_t scale_factor_mult2[3][3] = {
 | |
|     SCALE_GEN(4.0 / 3.0), /* 3 steps */
 | |
|     SCALE_GEN(4.0 / 5.0), /* 5 steps */
 | |
|     SCALE_GEN(4.0 / 9.0), /* 9 steps */
 | |
| };
 | |
| 
 | |
| DECLARE_ALIGNED_16(MPA_INT, ff_mpa_synth_window[512]);
 | |
| 
 | |
| /**
 | |
|  * Convert region offsets to region sizes and truncate
 | |
|  * size to big_values.
 | |
|  */
 | |
| void ff_region_offset2size(GranuleDef *g){
 | |
|     int i, k, j=0;
 | |
|     g->region_size[2] = (576 / 2);
 | |
|     for(i=0;i<3;i++) {
 | |
|         k = FFMIN(g->region_size[i], g->big_values);
 | |
|         g->region_size[i] = k - j;
 | |
|         j = k;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
 | |
|     if (g->block_type == 2)
 | |
|         g->region_size[0] = (36 / 2);
 | |
|     else {
 | |
|         if (s->sample_rate_index <= 2)
 | |
|             g->region_size[0] = (36 / 2);
 | |
|         else if (s->sample_rate_index != 8)
 | |
|             g->region_size[0] = (54 / 2);
 | |
|         else
 | |
|             g->region_size[0] = (108 / 2);
 | |
|     }
 | |
|     g->region_size[1] = (576 / 2);
 | |
| }
 | |
| 
 | |
| void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
 | |
|     int l;
 | |
|     g->region_size[0] =
 | |
|         band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
 | |
|     /* should not overflow */
 | |
|     l = FFMIN(ra1 + ra2 + 2, 22);
 | |
|     g->region_size[1] =
 | |
|         band_index_long[s->sample_rate_index][l] >> 1;
 | |
| }
 | |
| 
 | |
| void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
 | |
|     if (g->block_type == 2) {
 | |
|         if (g->switch_point) {
 | |
|             /* if switched mode, we handle the 36 first samples as
 | |
|                 long blocks.  For 8000Hz, we handle the 48 first
 | |
|                 exponents as long blocks (XXX: check this!) */
 | |
|             if (s->sample_rate_index <= 2)
 | |
|                 g->long_end = 8;
 | |
|             else if (s->sample_rate_index != 8)
 | |
|                 g->long_end = 6;
 | |
|             else
 | |
|                 g->long_end = 4; /* 8000 Hz */
 | |
| 
 | |
|             g->short_start = 2 + (s->sample_rate_index != 8);
 | |
|         } else {
 | |
|             g->long_end = 0;
 | |
|             g->short_start = 0;
 | |
|         }
 | |
|     } else {
 | |
|         g->short_start = 13;
 | |
|         g->long_end = 22;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* layer 1 unscaling */
 | |
| /* n = number of bits of the mantissa minus 1 */
 | |
| static inline int l1_unscale(int n, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod;
 | |
|     int64_t val;
 | |
| 
 | |
|     shift = scale_factor_modshift[scale_factor];
 | |
|     mod = shift & 3;
 | |
|     shift >>= 2;
 | |
|     val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
 | |
|     shift += n;
 | |
|     /* NOTE: at this point, 1 <= shift >= 21 + 15 */
 | |
|     return (int)((val + (1LL << (shift - 1))) >> shift);
 | |
| }
 | |
| 
 | |
| static inline int l2_unscale_group(int steps, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod, val;
 | |
| 
 | |
|     shift = scale_factor_modshift[scale_factor];
 | |
|     mod = shift & 3;
 | |
|     shift >>= 2;
 | |
| 
 | |
|     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
 | |
|     /* NOTE: at this point, 0 <= shift <= 21 */
 | |
|     if (shift > 0)
 | |
|         val = (val + (1 << (shift - 1))) >> shift;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
 | |
| static inline int l3_unscale(int value, int exponent)
 | |
| {
 | |
|     unsigned int m;
 | |
|     int e;
 | |
| 
 | |
|     e = table_4_3_exp  [4*value + (exponent&3)];
 | |
|     m = table_4_3_value[4*value + (exponent&3)];
 | |
|     e -= (exponent >> 2);
 | |
|     assert(e>=1);
 | |
|     if (e > 31)
 | |
|         return 0;
 | |
|     m = (m + (1 << (e-1))) >> e;
 | |
| 
 | |
|     return m;
 | |
| }
 | |
| 
 | |
| /* all integer n^(4/3) computation code */
 | |
| #define DEV_ORDER 13
 | |
| 
 | |
| #define POW_FRAC_BITS 24
 | |
| #define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
 | |
| #define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
 | |
| #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
 | |
| 
 | |
| static int dev_4_3_coefs[DEV_ORDER];
 | |
| 
 | |
| #if 0 /* unused */
 | |
| static int pow_mult3[3] = {
 | |
|     POW_FIX(1.0),
 | |
|     POW_FIX(1.25992104989487316476),
 | |
|     POW_FIX(1.58740105196819947474),
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static av_cold void int_pow_init(void)
 | |
| {
 | |
|     int i, a;
 | |
| 
 | |
|     a = POW_FIX(1.0);
 | |
|     for(i=0;i<DEV_ORDER;i++) {
 | |
|         a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
 | |
|         dev_4_3_coefs[i] = a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if 0 /* unused, remove? */
 | |
| /* return the mantissa and the binary exponent */
 | |
| static int int_pow(int i, int *exp_ptr)
 | |
| {
 | |
|     int e, er, eq, j;
 | |
|     int a, a1;
 | |
| 
 | |
|     /* renormalize */
 | |
|     a = i;
 | |
|     e = POW_FRAC_BITS;
 | |
|     while (a < (1 << (POW_FRAC_BITS - 1))) {
 | |
|         a = a << 1;
 | |
|         e--;
 | |
|     }
 | |
|     a -= (1 << POW_FRAC_BITS);
 | |
|     a1 = 0;
 | |
|     for(j = DEV_ORDER - 1; j >= 0; j--)
 | |
|         a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
 | |
|     a = (1 << POW_FRAC_BITS) + a1;
 | |
|     /* exponent compute (exact) */
 | |
|     e = e * 4;
 | |
|     er = e % 3;
 | |
|     eq = e / 3;
 | |
|     a = POW_MULL(a, pow_mult3[er]);
 | |
|     while (a >= 2 * POW_FRAC_ONE) {
 | |
|         a = a >> 1;
 | |
|         eq++;
 | |
|     }
 | |
|     /* convert to float */
 | |
|     while (a < POW_FRAC_ONE) {
 | |
|         a = a << 1;
 | |
|         eq--;
 | |
|     }
 | |
|     /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
 | |
| #if POW_FRAC_BITS > FRAC_BITS
 | |
|     a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
 | |
|     /* correct overflow */
 | |
|     if (a >= 2 * (1 << FRAC_BITS)) {
 | |
|         a = a >> 1;
 | |
|         eq++;
 | |
|     }
 | |
| #endif
 | |
|     *exp_ptr = eq;
 | |
|     return a;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static av_cold int decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     static int init=0;
 | |
|     int i, j, k;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     avctx->sample_fmt= OUT_FMT;
 | |
|     s->error_recognition= avctx->error_recognition;
 | |
| 
 | |
|     if(avctx->antialias_algo != FF_AA_FLOAT)
 | |
|         s->compute_antialias= compute_antialias_integer;
 | |
|     else
 | |
|         s->compute_antialias= compute_antialias_float;
 | |
| 
 | |
|     if (!init && !avctx->parse_only) {
 | |
|         int offset;
 | |
| 
 | |
|         /* scale factors table for layer 1/2 */
 | |
|         for(i=0;i<64;i++) {
 | |
|             int shift, mod;
 | |
|             /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
 | |
|             shift = (i / 3);
 | |
|             mod = i % 3;
 | |
|             scale_factor_modshift[i] = mod | (shift << 2);
 | |
|         }
 | |
| 
 | |
|         /* scale factor multiply for layer 1 */
 | |
|         for(i=0;i<15;i++) {
 | |
|             int n, norm;
 | |
|             n = i + 2;
 | |
|             norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
 | |
|             scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
 | |
|             scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
 | |
|             scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
 | |
|             dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
 | |
|                     i, norm,
 | |
|                     scale_factor_mult[i][0],
 | |
|                     scale_factor_mult[i][1],
 | |
|                     scale_factor_mult[i][2]);
 | |
|         }
 | |
| 
 | |
|         ff_mpa_synth_init(ff_mpa_synth_window);
 | |
| 
 | |
|         /* huffman decode tables */
 | |
|         offset = 0;
 | |
|         for(i=1;i<16;i++) {
 | |
|             const HuffTable *h = &mpa_huff_tables[i];
 | |
|             int xsize, x, y;
 | |
|             uint8_t  tmp_bits [512];
 | |
|             uint16_t tmp_codes[512];
 | |
| 
 | |
|             memset(tmp_bits , 0, sizeof(tmp_bits ));
 | |
|             memset(tmp_codes, 0, sizeof(tmp_codes));
 | |
| 
 | |
|             xsize = h->xsize;
 | |
| 
 | |
|             j = 0;
 | |
|             for(x=0;x<xsize;x++) {
 | |
|                 for(y=0;y<xsize;y++){
 | |
|                     tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
 | |
|                     tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* XXX: fail test */
 | |
|             huff_vlc[i].table = huff_vlc_tables+offset;
 | |
|             huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
 | |
|             init_vlc(&huff_vlc[i], 7, 512,
 | |
|                      tmp_bits, 1, 1, tmp_codes, 2, 2,
 | |
|                      INIT_VLC_USE_NEW_STATIC);
 | |
|             offset += huff_vlc_tables_sizes[i];
 | |
|         }
 | |
|         assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
 | |
| 
 | |
|         offset = 0;
 | |
|         for(i=0;i<2;i++) {
 | |
|             huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
 | |
|             huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
 | |
|             init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
 | |
|                      mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
 | |
|                      INIT_VLC_USE_NEW_STATIC);
 | |
|             offset += huff_quad_vlc_tables_sizes[i];
 | |
|         }
 | |
|         assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
 | |
| 
 | |
|         for(i=0;i<9;i++) {
 | |
|             k = 0;
 | |
|             for(j=0;j<22;j++) {
 | |
|                 band_index_long[i][j] = k;
 | |
|                 k += band_size_long[i][j];
 | |
|             }
 | |
|             band_index_long[i][22] = k;
 | |
|         }
 | |
| 
 | |
|         /* compute n ^ (4/3) and store it in mantissa/exp format */
 | |
| 
 | |
|         int_pow_init();
 | |
|         mpegaudio_tableinit();
 | |
| 
 | |
|         for(i=0;i<7;i++) {
 | |
|             float f;
 | |
|             int v;
 | |
|             if (i != 6) {
 | |
|                 f = tan((double)i * M_PI / 12.0);
 | |
|                 v = FIXR(f / (1.0 + f));
 | |
|             } else {
 | |
|                 v = FIXR(1.0);
 | |
|             }
 | |
|             is_table[0][i] = v;
 | |
|             is_table[1][6 - i] = v;
 | |
|         }
 | |
|         /* invalid values */
 | |
|         for(i=7;i<16;i++)
 | |
|             is_table[0][i] = is_table[1][i] = 0.0;
 | |
| 
 | |
|         for(i=0;i<16;i++) {
 | |
|             double f;
 | |
|             int e, k;
 | |
| 
 | |
|             for(j=0;j<2;j++) {
 | |
|                 e = -(j + 1) * ((i + 1) >> 1);
 | |
|                 f = pow(2.0, e / 4.0);
 | |
|                 k = i & 1;
 | |
|                 is_table_lsf[j][k ^ 1][i] = FIXR(f);
 | |
|                 is_table_lsf[j][k][i] = FIXR(1.0);
 | |
|                 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
 | |
|                         i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for(i=0;i<8;i++) {
 | |
|             float ci, cs, ca;
 | |
|             ci = ci_table[i];
 | |
|             cs = 1.0 / sqrt(1.0 + ci * ci);
 | |
|             ca = cs * ci;
 | |
|             csa_table[i][0] = FIXHR(cs/4);
 | |
|             csa_table[i][1] = FIXHR(ca/4);
 | |
|             csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
 | |
|             csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
 | |
|             csa_table_float[i][0] = cs;
 | |
|             csa_table_float[i][1] = ca;
 | |
|             csa_table_float[i][2] = ca + cs;
 | |
|             csa_table_float[i][3] = ca - cs;
 | |
|         }
 | |
| 
 | |
|         /* compute mdct windows */
 | |
|         for(i=0;i<36;i++) {
 | |
|             for(j=0; j<4; j++){
 | |
|                 double d;
 | |
| 
 | |
|                 if(j==2 && i%3 != 1)
 | |
|                     continue;
 | |
| 
 | |
|                 d= sin(M_PI * (i + 0.5) / 36.0);
 | |
|                 if(j==1){
 | |
|                     if     (i>=30) d= 0;
 | |
|                     else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
 | |
|                     else if(i>=18) d= 1;
 | |
|                 }else if(j==3){
 | |
|                     if     (i<  6) d= 0;
 | |
|                     else if(i< 12) d= sin(M_PI * (i -  6 + 0.5) / 12.0);
 | |
|                     else if(i< 18) d= 1;
 | |
|                 }
 | |
|                 //merge last stage of imdct into the window coefficients
 | |
|                 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
 | |
| 
 | |
|                 if(j==2)
 | |
|                     mdct_win[j][i/3] = FIXHR((d / (1<<5)));
 | |
|                 else
 | |
|                     mdct_win[j][i  ] = FIXHR((d / (1<<5)));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* NOTE: we do frequency inversion adter the MDCT by changing
 | |
|            the sign of the right window coefs */
 | |
|         for(j=0;j<4;j++) {
 | |
|             for(i=0;i<36;i+=2) {
 | |
|                 mdct_win[j + 4][i] = mdct_win[j][i];
 | |
|                 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         init = 1;
 | |
|     }
 | |
| 
 | |
|     if (avctx->codec_id == CODEC_ID_MP3ADU)
 | |
|         s->adu_mode = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
 | |
| 
 | |
| /* cos(i*pi/64) */
 | |
| 
 | |
| #define COS0_0  FIXHR(0.50060299823519630134/2)
 | |
| #define COS0_1  FIXHR(0.50547095989754365998/2)
 | |
| #define COS0_2  FIXHR(0.51544730992262454697/2)
 | |
| #define COS0_3  FIXHR(0.53104259108978417447/2)
 | |
| #define COS0_4  FIXHR(0.55310389603444452782/2)
 | |
| #define COS0_5  FIXHR(0.58293496820613387367/2)
 | |
| #define COS0_6  FIXHR(0.62250412303566481615/2)
 | |
| #define COS0_7  FIXHR(0.67480834145500574602/2)
 | |
| #define COS0_8  FIXHR(0.74453627100229844977/2)
 | |
| #define COS0_9  FIXHR(0.83934964541552703873/2)
 | |
| #define COS0_10 FIXHR(0.97256823786196069369/2)
 | |
| #define COS0_11 FIXHR(1.16943993343288495515/4)
 | |
| #define COS0_12 FIXHR(1.48416461631416627724/4)
 | |
| #define COS0_13 FIXHR(2.05778100995341155085/8)
 | |
| #define COS0_14 FIXHR(3.40760841846871878570/8)
 | |
| #define COS0_15 FIXHR(10.19000812354805681150/32)
 | |
| 
 | |
| #define COS1_0 FIXHR(0.50241928618815570551/2)
 | |
| #define COS1_1 FIXHR(0.52249861493968888062/2)
 | |
| #define COS1_2 FIXHR(0.56694403481635770368/2)
 | |
| #define COS1_3 FIXHR(0.64682178335999012954/2)
 | |
| #define COS1_4 FIXHR(0.78815462345125022473/2)
 | |
| #define COS1_5 FIXHR(1.06067768599034747134/4)
 | |
| #define COS1_6 FIXHR(1.72244709823833392782/4)
 | |
| #define COS1_7 FIXHR(5.10114861868916385802/16)
 | |
| 
 | |
| #define COS2_0 FIXHR(0.50979557910415916894/2)
 | |
| #define COS2_1 FIXHR(0.60134488693504528054/2)
 | |
| #define COS2_2 FIXHR(0.89997622313641570463/2)
 | |
| #define COS2_3 FIXHR(2.56291544774150617881/8)
 | |
| 
 | |
| #define COS3_0 FIXHR(0.54119610014619698439/2)
 | |
| #define COS3_1 FIXHR(1.30656296487637652785/4)
 | |
| 
 | |
| #define COS4_0 FIXHR(0.70710678118654752439/2)
 | |
| 
 | |
| /* butterfly operator */
 | |
| #define BF(a, b, c, s)\
 | |
| {\
 | |
|     tmp0 = tab[a] + tab[b];\
 | |
|     tmp1 = tab[a] - tab[b];\
 | |
|     tab[a] = tmp0;\
 | |
|     tab[b] = MULH(tmp1<<(s), c);\
 | |
| }
 | |
| 
 | |
| #define BF1(a, b, c, d)\
 | |
| {\
 | |
|     BF(a, b, COS4_0, 1);\
 | |
|     BF(c, d,-COS4_0, 1);\
 | |
|     tab[c] += tab[d];\
 | |
| }
 | |
| 
 | |
| #define BF2(a, b, c, d)\
 | |
| {\
 | |
|     BF(a, b, COS4_0, 1);\
 | |
|     BF(c, d,-COS4_0, 1);\
 | |
|     tab[c] += tab[d];\
 | |
|     tab[a] += tab[c];\
 | |
|     tab[c] += tab[b];\
 | |
|     tab[b] += tab[d];\
 | |
| }
 | |
| 
 | |
| #define ADD(a, b) tab[a] += tab[b]
 | |
| 
 | |
| /* DCT32 without 1/sqrt(2) coef zero scaling. */
 | |
| static void dct32(int32_t *out, int32_t *tab)
 | |
| {
 | |
|     int tmp0, tmp1;
 | |
| 
 | |
|     /* pass 1 */
 | |
|     BF( 0, 31, COS0_0 , 1);
 | |
|     BF(15, 16, COS0_15, 5);
 | |
|     /* pass 2 */
 | |
|     BF( 0, 15, COS1_0 , 1);
 | |
|     BF(16, 31,-COS1_0 , 1);
 | |
|     /* pass 1 */
 | |
|     BF( 7, 24, COS0_7 , 1);
 | |
|     BF( 8, 23, COS0_8 , 1);
 | |
|     /* pass 2 */
 | |
|     BF( 7,  8, COS1_7 , 4);
 | |
|     BF(23, 24,-COS1_7 , 4);
 | |
|     /* pass 3 */
 | |
|     BF( 0,  7, COS2_0 , 1);
 | |
|     BF( 8, 15,-COS2_0 , 1);
 | |
|     BF(16, 23, COS2_0 , 1);
 | |
|     BF(24, 31,-COS2_0 , 1);
 | |
|     /* pass 1 */
 | |
|     BF( 3, 28, COS0_3 , 1);
 | |
|     BF(12, 19, COS0_12, 2);
 | |
|     /* pass 2 */
 | |
|     BF( 3, 12, COS1_3 , 1);
 | |
|     BF(19, 28,-COS1_3 , 1);
 | |
|     /* pass 1 */
 | |
|     BF( 4, 27, COS0_4 , 1);
 | |
|     BF(11, 20, COS0_11, 2);
 | |
|     /* pass 2 */
 | |
|     BF( 4, 11, COS1_4 , 1);
 | |
|     BF(20, 27,-COS1_4 , 1);
 | |
|     /* pass 3 */
 | |
|     BF( 3,  4, COS2_3 , 3);
 | |
|     BF(11, 12,-COS2_3 , 3);
 | |
|     BF(19, 20, COS2_3 , 3);
 | |
|     BF(27, 28,-COS2_3 , 3);
 | |
|     /* pass 4 */
 | |
|     BF( 0,  3, COS3_0 , 1);
 | |
|     BF( 4,  7,-COS3_0 , 1);
 | |
|     BF( 8, 11, COS3_0 , 1);
 | |
|     BF(12, 15,-COS3_0 , 1);
 | |
|     BF(16, 19, COS3_0 , 1);
 | |
|     BF(20, 23,-COS3_0 , 1);
 | |
|     BF(24, 27, COS3_0 , 1);
 | |
|     BF(28, 31,-COS3_0 , 1);
 | |
| 
 | |
| 
 | |
| 
 | |
|     /* pass 1 */
 | |
|     BF( 1, 30, COS0_1 , 1);
 | |
|     BF(14, 17, COS0_14, 3);
 | |
|     /* pass 2 */
 | |
|     BF( 1, 14, COS1_1 , 1);
 | |
|     BF(17, 30,-COS1_1 , 1);
 | |
|     /* pass 1 */
 | |
|     BF( 6, 25, COS0_6 , 1);
 | |
|     BF( 9, 22, COS0_9 , 1);
 | |
|     /* pass 2 */
 | |
|     BF( 6,  9, COS1_6 , 2);
 | |
|     BF(22, 25,-COS1_6 , 2);
 | |
|     /* pass 3 */
 | |
|     BF( 1,  6, COS2_1 , 1);
 | |
|     BF( 9, 14,-COS2_1 , 1);
 | |
|     BF(17, 22, COS2_1 , 1);
 | |
|     BF(25, 30,-COS2_1 , 1);
 | |
| 
 | |
|     /* pass 1 */
 | |
|     BF( 2, 29, COS0_2 , 1);
 | |
|     BF(13, 18, COS0_13, 3);
 | |
|     /* pass 2 */
 | |
|     BF( 2, 13, COS1_2 , 1);
 | |
|     BF(18, 29,-COS1_2 , 1);
 | |
|     /* pass 1 */
 | |
|     BF( 5, 26, COS0_5 , 1);
 | |
|     BF(10, 21, COS0_10, 1);
 | |
|     /* pass 2 */
 | |
|     BF( 5, 10, COS1_5 , 2);
 | |
|     BF(21, 26,-COS1_5 , 2);
 | |
|     /* pass 3 */
 | |
|     BF( 2,  5, COS2_2 , 1);
 | |
|     BF(10, 13,-COS2_2 , 1);
 | |
|     BF(18, 21, COS2_2 , 1);
 | |
|     BF(26, 29,-COS2_2 , 1);
 | |
|     /* pass 4 */
 | |
|     BF( 1,  2, COS3_1 , 2);
 | |
|     BF( 5,  6,-COS3_1 , 2);
 | |
|     BF( 9, 10, COS3_1 , 2);
 | |
|     BF(13, 14,-COS3_1 , 2);
 | |
|     BF(17, 18, COS3_1 , 2);
 | |
|     BF(21, 22,-COS3_1 , 2);
 | |
|     BF(25, 26, COS3_1 , 2);
 | |
|     BF(29, 30,-COS3_1 , 2);
 | |
| 
 | |
|     /* pass 5 */
 | |
|     BF1( 0,  1,  2,  3);
 | |
|     BF2( 4,  5,  6,  7);
 | |
|     BF1( 8,  9, 10, 11);
 | |
|     BF2(12, 13, 14, 15);
 | |
|     BF1(16, 17, 18, 19);
 | |
|     BF2(20, 21, 22, 23);
 | |
|     BF1(24, 25, 26, 27);
 | |
|     BF2(28, 29, 30, 31);
 | |
| 
 | |
|     /* pass 6 */
 | |
| 
 | |
|     ADD( 8, 12);
 | |
|     ADD(12, 10);
 | |
|     ADD(10, 14);
 | |
|     ADD(14,  9);
 | |
|     ADD( 9, 13);
 | |
|     ADD(13, 11);
 | |
|     ADD(11, 15);
 | |
| 
 | |
|     out[ 0] = tab[0];
 | |
|     out[16] = tab[1];
 | |
|     out[ 8] = tab[2];
 | |
|     out[24] = tab[3];
 | |
|     out[ 4] = tab[4];
 | |
|     out[20] = tab[5];
 | |
|     out[12] = tab[6];
 | |
|     out[28] = tab[7];
 | |
|     out[ 2] = tab[8];
 | |
|     out[18] = tab[9];
 | |
|     out[10] = tab[10];
 | |
|     out[26] = tab[11];
 | |
|     out[ 6] = tab[12];
 | |
|     out[22] = tab[13];
 | |
|     out[14] = tab[14];
 | |
|     out[30] = tab[15];
 | |
| 
 | |
|     ADD(24, 28);
 | |
|     ADD(28, 26);
 | |
|     ADD(26, 30);
 | |
|     ADD(30, 25);
 | |
|     ADD(25, 29);
 | |
|     ADD(29, 27);
 | |
|     ADD(27, 31);
 | |
| 
 | |
|     out[ 1] = tab[16] + tab[24];
 | |
|     out[17] = tab[17] + tab[25];
 | |
|     out[ 9] = tab[18] + tab[26];
 | |
|     out[25] = tab[19] + tab[27];
 | |
|     out[ 5] = tab[20] + tab[28];
 | |
|     out[21] = tab[21] + tab[29];
 | |
|     out[13] = tab[22] + tab[30];
 | |
|     out[29] = tab[23] + tab[31];
 | |
|     out[ 3] = tab[24] + tab[20];
 | |
|     out[19] = tab[25] + tab[21];
 | |
|     out[11] = tab[26] + tab[22];
 | |
|     out[27] = tab[27] + tab[23];
 | |
|     out[ 7] = tab[28] + tab[18];
 | |
|     out[23] = tab[29] + tab[19];
 | |
|     out[15] = tab[30] + tab[17];
 | |
|     out[31] = tab[31];
 | |
| }
 | |
| 
 | |
| #if FRAC_BITS <= 15
 | |
| 
 | |
| static inline int round_sample(int *sum)
 | |
| {
 | |
|     int sum1;
 | |
|     sum1 = (*sum) >> OUT_SHIFT;
 | |
|     *sum &= (1<<OUT_SHIFT)-1;
 | |
|     return av_clip(sum1, OUT_MIN, OUT_MAX);
 | |
| }
 | |
| 
 | |
| /* signed 16x16 -> 32 multiply add accumulate */
 | |
| #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
 | |
| 
 | |
| /* signed 16x16 -> 32 multiply */
 | |
| #define MULS(ra, rb) MUL16(ra, rb)
 | |
| 
 | |
| #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int round_sample(int64_t *sum)
 | |
| {
 | |
|     int sum1;
 | |
|     sum1 = (int)((*sum) >> OUT_SHIFT);
 | |
|     *sum &= (1<<OUT_SHIFT)-1;
 | |
|     return av_clip(sum1, OUT_MIN, OUT_MAX);
 | |
| }
 | |
| 
 | |
| #   define MULS(ra, rb) MUL64(ra, rb)
 | |
| #   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
 | |
| #   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
 | |
| #endif
 | |
| 
 | |
| #define SUM8(op, sum, w, p)               \
 | |
| {                                         \
 | |
|     op(sum, (w)[0 * 64], (p)[0 * 64]);    \
 | |
|     op(sum, (w)[1 * 64], (p)[1 * 64]);    \
 | |
|     op(sum, (w)[2 * 64], (p)[2 * 64]);    \
 | |
|     op(sum, (w)[3 * 64], (p)[3 * 64]);    \
 | |
|     op(sum, (w)[4 * 64], (p)[4 * 64]);    \
 | |
|     op(sum, (w)[5 * 64], (p)[5 * 64]);    \
 | |
|     op(sum, (w)[6 * 64], (p)[6 * 64]);    \
 | |
|     op(sum, (w)[7 * 64], (p)[7 * 64]);    \
 | |
| }
 | |
| 
 | |
| #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
 | |
| {                                               \
 | |
|     int tmp;\
 | |
|     tmp = p[0 * 64];\
 | |
|     op1(sum1, (w1)[0 * 64], tmp);\
 | |
|     op2(sum2, (w2)[0 * 64], tmp);\
 | |
|     tmp = p[1 * 64];\
 | |
|     op1(sum1, (w1)[1 * 64], tmp);\
 | |
|     op2(sum2, (w2)[1 * 64], tmp);\
 | |
|     tmp = p[2 * 64];\
 | |
|     op1(sum1, (w1)[2 * 64], tmp);\
 | |
|     op2(sum2, (w2)[2 * 64], tmp);\
 | |
|     tmp = p[3 * 64];\
 | |
|     op1(sum1, (w1)[3 * 64], tmp);\
 | |
|     op2(sum2, (w2)[3 * 64], tmp);\
 | |
|     tmp = p[4 * 64];\
 | |
|     op1(sum1, (w1)[4 * 64], tmp);\
 | |
|     op2(sum2, (w2)[4 * 64], tmp);\
 | |
|     tmp = p[5 * 64];\
 | |
|     op1(sum1, (w1)[5 * 64], tmp);\
 | |
|     op2(sum2, (w2)[5 * 64], tmp);\
 | |
|     tmp = p[6 * 64];\
 | |
|     op1(sum1, (w1)[6 * 64], tmp);\
 | |
|     op2(sum2, (w2)[6 * 64], tmp);\
 | |
|     tmp = p[7 * 64];\
 | |
|     op1(sum1, (w1)[7 * 64], tmp);\
 | |
|     op2(sum2, (w2)[7 * 64], tmp);\
 | |
| }
 | |
| 
 | |
| void av_cold ff_mpa_synth_init(MPA_INT *window)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* max = 18760, max sum over all 16 coefs : 44736 */
 | |
|     for(i=0;i<257;i++) {
 | |
|         int v;
 | |
|         v = ff_mpa_enwindow[i];
 | |
| #if WFRAC_BITS < 16
 | |
|         v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
 | |
| #endif
 | |
|         window[i] = v;
 | |
|         if ((i & 63) != 0)
 | |
|             v = -v;
 | |
|         if (i != 0)
 | |
|             window[512 - i] = v;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
 | |
|    32 samples. */
 | |
| /* XXX: optimize by avoiding ring buffer usage */
 | |
| void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
 | |
|                          MPA_INT *window, int *dither_state,
 | |
|                          OUT_INT *samples, int incr,
 | |
|                          int32_t sb_samples[SBLIMIT])
 | |
| {
 | |
|     register MPA_INT *synth_buf;
 | |
|     register const MPA_INT *w, *w2, *p;
 | |
|     int j, offset;
 | |
|     OUT_INT *samples2;
 | |
| #if FRAC_BITS <= 15
 | |
|     int32_t tmp[32];
 | |
|     int sum, sum2;
 | |
| #else
 | |
|     int64_t sum, sum2;
 | |
| #endif
 | |
| 
 | |
|     offset = *synth_buf_offset;
 | |
|     synth_buf = synth_buf_ptr + offset;
 | |
| 
 | |
| #if FRAC_BITS <= 15
 | |
|     dct32(tmp, sb_samples);
 | |
|     for(j=0;j<32;j++) {
 | |
|         /* NOTE: can cause a loss in precision if very high amplitude
 | |
|            sound */
 | |
|         synth_buf[j] = av_clip_int16(tmp[j]);
 | |
|     }
 | |
| #else
 | |
|     dct32(synth_buf, sb_samples);
 | |
| #endif
 | |
| 
 | |
|     /* copy to avoid wrap */
 | |
|     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
 | |
| 
 | |
|     samples2 = samples + 31 * incr;
 | |
|     w = window;
 | |
|     w2 = window + 31;
 | |
| 
 | |
|     sum = *dither_state;
 | |
|     p = synth_buf + 16;
 | |
|     SUM8(MACS, sum, w, p);
 | |
|     p = synth_buf + 48;
 | |
|     SUM8(MLSS, sum, w + 32, p);
 | |
|     *samples = round_sample(&sum);
 | |
|     samples += incr;
 | |
|     w++;
 | |
| 
 | |
|     /* we calculate two samples at the same time to avoid one memory
 | |
|        access per two sample */
 | |
|     for(j=1;j<16;j++) {
 | |
|         sum2 = 0;
 | |
|         p = synth_buf + 16 + j;
 | |
|         SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
 | |
|         p = synth_buf + 48 - j;
 | |
|         SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
 | |
| 
 | |
|         *samples = round_sample(&sum);
 | |
|         samples += incr;
 | |
|         sum += sum2;
 | |
|         *samples2 = round_sample(&sum);
 | |
|         samples2 -= incr;
 | |
|         w++;
 | |
|         w2--;
 | |
|     }
 | |
| 
 | |
|     p = synth_buf + 32;
 | |
|     SUM8(MLSS, sum, w + 32, p);
 | |
|     *samples = round_sample(&sum);
 | |
|     *dither_state= sum;
 | |
| 
 | |
|     offset = (offset - 32) & 511;
 | |
|     *synth_buf_offset = offset;
 | |
| }
 | |
| 
 | |
| #define C3 FIXHR(0.86602540378443864676/2)
 | |
| 
 | |
| /* 0.5 / cos(pi*(2*i+1)/36) */
 | |
| static const int icos36[9] = {
 | |
|     FIXR(0.50190991877167369479),
 | |
|     FIXR(0.51763809020504152469), //0
 | |
|     FIXR(0.55168895948124587824),
 | |
|     FIXR(0.61038729438072803416),
 | |
|     FIXR(0.70710678118654752439), //1
 | |
|     FIXR(0.87172339781054900991),
 | |
|     FIXR(1.18310079157624925896),
 | |
|     FIXR(1.93185165257813657349), //2
 | |
|     FIXR(5.73685662283492756461),
 | |
| };
 | |
| 
 | |
| /* 0.5 / cos(pi*(2*i+1)/36) */
 | |
| static const int icos36h[9] = {
 | |
|     FIXHR(0.50190991877167369479/2),
 | |
|     FIXHR(0.51763809020504152469/2), //0
 | |
|     FIXHR(0.55168895948124587824/2),
 | |
|     FIXHR(0.61038729438072803416/2),
 | |
|     FIXHR(0.70710678118654752439/2), //1
 | |
|     FIXHR(0.87172339781054900991/2),
 | |
|     FIXHR(1.18310079157624925896/4),
 | |
|     FIXHR(1.93185165257813657349/4), //2
 | |
| //    FIXHR(5.73685662283492756461),
 | |
| };
 | |
| 
 | |
| /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
 | |
|    cases. */
 | |
| static void imdct12(int *out, int *in)
 | |
| {
 | |
|     int in0, in1, in2, in3, in4, in5, t1, t2;
 | |
| 
 | |
|     in0= in[0*3];
 | |
|     in1= in[1*3] + in[0*3];
 | |
|     in2= in[2*3] + in[1*3];
 | |
|     in3= in[3*3] + in[2*3];
 | |
|     in4= in[4*3] + in[3*3];
 | |
|     in5= in[5*3] + in[4*3];
 | |
|     in5 += in3;
 | |
|     in3 += in1;
 | |
| 
 | |
|     in2= MULH(2*in2, C3);
 | |
|     in3= MULH(4*in3, C3);
 | |
| 
 | |
|     t1 = in0 - in4;
 | |
|     t2 = MULH(2*(in1 - in5), icos36h[4]);
 | |
| 
 | |
|     out[ 7]=
 | |
|     out[10]= t1 + t2;
 | |
|     out[ 1]=
 | |
|     out[ 4]= t1 - t2;
 | |
| 
 | |
|     in0 += in4>>1;
 | |
|     in4 = in0 + in2;
 | |
|     in5 += 2*in1;
 | |
|     in1 = MULH(in5 + in3, icos36h[1]);
 | |
|     out[ 8]=
 | |
|     out[ 9]= in4 + in1;
 | |
|     out[ 2]=
 | |
|     out[ 3]= in4 - in1;
 | |
| 
 | |
|     in0 -= in2;
 | |
|     in5 = MULH(2*(in5 - in3), icos36h[7]);
 | |
|     out[ 0]=
 | |
|     out[ 5]= in0 - in5;
 | |
|     out[ 6]=
 | |
|     out[11]= in0 + in5;
 | |
| }
 | |
| 
 | |
| /* cos(pi*i/18) */
 | |
| #define C1 FIXHR(0.98480775301220805936/2)
 | |
| #define C2 FIXHR(0.93969262078590838405/2)
 | |
| #define C3 FIXHR(0.86602540378443864676/2)
 | |
| #define C4 FIXHR(0.76604444311897803520/2)
 | |
| #define C5 FIXHR(0.64278760968653932632/2)
 | |
| #define C6 FIXHR(0.5/2)
 | |
| #define C7 FIXHR(0.34202014332566873304/2)
 | |
| #define C8 FIXHR(0.17364817766693034885/2)
 | |
| 
 | |
| 
 | |
| /* using Lee like decomposition followed by hand coded 9 points DCT */
 | |
| static void imdct36(int *out, int *buf, int *in, int *win)
 | |
| {
 | |
|     int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
 | |
|     int tmp[18], *tmp1, *in1;
 | |
| 
 | |
|     for(i=17;i>=1;i--)
 | |
|         in[i] += in[i-1];
 | |
|     for(i=17;i>=3;i-=2)
 | |
|         in[i] += in[i-2];
 | |
| 
 | |
|     for(j=0;j<2;j++) {
 | |
|         tmp1 = tmp + j;
 | |
|         in1 = in + j;
 | |
| #if 0
 | |
| //more accurate but slower
 | |
|         int64_t t0, t1, t2, t3;
 | |
|         t2 = in1[2*4] + in1[2*8] - in1[2*2];
 | |
| 
 | |
|         t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
 | |
|         t1 = in1[2*0] - in1[2*6];
 | |
|         tmp1[ 6] = t1 - (t2>>1);
 | |
|         tmp1[16] = t1 + t2;
 | |
| 
 | |
|         t0 = MUL64(2*(in1[2*2] + in1[2*4]),    C2);
 | |
|         t1 = MUL64(   in1[2*4] - in1[2*8] , -2*C8);
 | |
|         t2 = MUL64(2*(in1[2*2] + in1[2*8]),   -C4);
 | |
| 
 | |
|         tmp1[10] = (t3 - t0 - t2) >> 32;
 | |
|         tmp1[ 2] = (t3 + t0 + t1) >> 32;
 | |
|         tmp1[14] = (t3 + t2 - t1) >> 32;
 | |
| 
 | |
|         tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
 | |
|         t2 = MUL64(2*(in1[2*1] + in1[2*5]),    C1);
 | |
|         t3 = MUL64(   in1[2*5] - in1[2*7] , -2*C7);
 | |
|         t0 = MUL64(2*in1[2*3], C3);
 | |
| 
 | |
|         t1 = MUL64(2*(in1[2*1] + in1[2*7]),   -C5);
 | |
| 
 | |
|         tmp1[ 0] = (t2 + t3 + t0) >> 32;
 | |
|         tmp1[12] = (t2 + t1 - t0) >> 32;
 | |
|         tmp1[ 8] = (t3 - t1 - t0) >> 32;
 | |
| #else
 | |
|         t2 = in1[2*4] + in1[2*8] - in1[2*2];
 | |
| 
 | |
|         t3 = in1[2*0] + (in1[2*6]>>1);
 | |
|         t1 = in1[2*0] - in1[2*6];
 | |
|         tmp1[ 6] = t1 - (t2>>1);
 | |
|         tmp1[16] = t1 + t2;
 | |
| 
 | |
|         t0 = MULH(2*(in1[2*2] + in1[2*4]),    C2);
 | |
|         t1 = MULH(   in1[2*4] - in1[2*8] , -2*C8);
 | |
|         t2 = MULH(2*(in1[2*2] + in1[2*8]),   -C4);
 | |
| 
 | |
|         tmp1[10] = t3 - t0 - t2;
 | |
|         tmp1[ 2] = t3 + t0 + t1;
 | |
|         tmp1[14] = t3 + t2 - t1;
 | |
| 
 | |
|         tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
 | |
|         t2 = MULH(2*(in1[2*1] + in1[2*5]),    C1);
 | |
|         t3 = MULH(   in1[2*5] - in1[2*7] , -2*C7);
 | |
|         t0 = MULH(2*in1[2*3], C3);
 | |
| 
 | |
|         t1 = MULH(2*(in1[2*1] + in1[2*7]),   -C5);
 | |
| 
 | |
|         tmp1[ 0] = t2 + t3 + t0;
 | |
|         tmp1[12] = t2 + t1 - t0;
 | |
|         tmp1[ 8] = t3 - t1 - t0;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     for(j=0;j<4;j++) {
 | |
|         t0 = tmp[i];
 | |
|         t1 = tmp[i + 2];
 | |
|         s0 = t1 + t0;
 | |
|         s2 = t1 - t0;
 | |
| 
 | |
|         t2 = tmp[i + 1];
 | |
|         t3 = tmp[i + 3];
 | |
|         s1 = MULH(2*(t3 + t2), icos36h[j]);
 | |
|         s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
 | |
| 
 | |
|         t0 = s0 + s1;
 | |
|         t1 = s0 - s1;
 | |
|         out[(9 + j)*SBLIMIT] =  MULH(t1, win[9 + j]) + buf[9 + j];
 | |
|         out[(8 - j)*SBLIMIT] =  MULH(t1, win[8 - j]) + buf[8 - j];
 | |
|         buf[9 + j] = MULH(t0, win[18 + 9 + j]);
 | |
|         buf[8 - j] = MULH(t0, win[18 + 8 - j]);
 | |
| 
 | |
|         t0 = s2 + s3;
 | |
|         t1 = s2 - s3;
 | |
|         out[(9 + 8 - j)*SBLIMIT] =  MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
 | |
|         out[(        j)*SBLIMIT] =  MULH(t1, win[        j]) + buf[        j];
 | |
|         buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
 | |
|         buf[      + j] = MULH(t0, win[18         + j]);
 | |
|         i += 4;
 | |
|     }
 | |
| 
 | |
|     s0 = tmp[16];
 | |
|     s1 = MULH(2*tmp[17], icos36h[4]);
 | |
|     t0 = s0 + s1;
 | |
|     t1 = s0 - s1;
 | |
|     out[(9 + 4)*SBLIMIT] =  MULH(t1, win[9 + 4]) + buf[9 + 4];
 | |
|     out[(8 - 4)*SBLIMIT] =  MULH(t1, win[8 - 4]) + buf[8 - 4];
 | |
|     buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
 | |
|     buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
 | |
| }
 | |
| 
 | |
| /* return the number of decoded frames */
 | |
| static int mp_decode_layer1(MPADecodeContext *s)
 | |
| {
 | |
|     int bound, i, v, n, ch, j, mant;
 | |
|     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO)
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = SBLIMIT;
 | |
| 
 | |
|     /* allocation bits */
 | |
|     for(i=0;i<bound;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             allocation[ch][i] = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
|     for(i=bound;i<SBLIMIT;i++) {
 | |
|         allocation[0][i] = get_bits(&s->gb, 4);
 | |
|     }
 | |
| 
 | |
|     /* scale factors */
 | |
|     for(i=0;i<bound;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (allocation[ch][i])
 | |
|                 scale_factors[ch][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
|     for(i=bound;i<SBLIMIT;i++) {
 | |
|         if (allocation[0][i]) {
 | |
|             scale_factors[0][i] = get_bits(&s->gb, 6);
 | |
|             scale_factors[1][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* compute samples */
 | |
|     for(j=0;j<12;j++) {
 | |
|         for(i=0;i<bound;i++) {
 | |
|             for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                 n = allocation[ch][i];
 | |
|                 if (n) {
 | |
|                     mant = get_bits(&s->gb, n + 1);
 | |
|                     v = l1_unscale(n, mant, scale_factors[ch][i]);
 | |
|                 } else {
 | |
|                     v = 0;
 | |
|                 }
 | |
|                 s->sb_samples[ch][j][i] = v;
 | |
|             }
 | |
|         }
 | |
|         for(i=bound;i<SBLIMIT;i++) {
 | |
|             n = allocation[0][i];
 | |
|             if (n) {
 | |
|                 mant = get_bits(&s->gb, n + 1);
 | |
|                 v = l1_unscale(n, mant, scale_factors[0][i]);
 | |
|                 s->sb_samples[0][j][i] = v;
 | |
|                 v = l1_unscale(n, mant, scale_factors[1][i]);
 | |
|                 s->sb_samples[1][j][i] = v;
 | |
|             } else {
 | |
|                 s->sb_samples[0][j][i] = 0;
 | |
|                 s->sb_samples[1][j][i] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 12;
 | |
| }
 | |
| 
 | |
| static int mp_decode_layer2(MPADecodeContext *s)
 | |
| {
 | |
|     int sblimit; /* number of used subbands */
 | |
|     const unsigned char *alloc_table;
 | |
|     int table, bit_alloc_bits, i, j, ch, bound, v;
 | |
|     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
 | |
|     int scale, qindex, bits, steps, k, l, m, b;
 | |
| 
 | |
|     /* select decoding table */
 | |
|     table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
 | |
|                             s->sample_rate, s->lsf);
 | |
|     sblimit = ff_mpa_sblimit_table[table];
 | |
|     alloc_table = ff_mpa_alloc_tables[table];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO)
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = sblimit;
 | |
| 
 | |
|     dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
 | |
| 
 | |
|     /* sanity check */
 | |
|     if( bound > sblimit ) bound = sblimit;
 | |
| 
 | |
|     /* parse bit allocation */
 | |
|     j = 0;
 | |
|     for(i=0;i<bound;i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
 | |
|         }
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
|     for(i=bound;i<sblimit;i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         v = get_bits(&s->gb, bit_alloc_bits);
 | |
|         bit_alloc[0][i] = v;
 | |
|         bit_alloc[1][i] = v;
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
| 
 | |
|     /* scale codes */
 | |
|     for(i=0;i<sblimit;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (bit_alloc[ch][i])
 | |
|                 scale_code[ch][i] = get_bits(&s->gb, 2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* scale factors */
 | |
|     for(i=0;i<sblimit;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (bit_alloc[ch][i]) {
 | |
|                 sf = scale_factors[ch][i];
 | |
|                 switch(scale_code[ch][i]) {
 | |
|                 default:
 | |
|                 case 0:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     sf[2] = sf[0];
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[2];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* samples */
 | |
|     for(k=0;k<3;k++) {
 | |
|         for(l=0;l<12;l+=3) {
 | |
|             j = 0;
 | |
|             for(i=0;i<bound;i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                     b = bit_alloc[ch][i];
 | |
|                     if (b) {
 | |
|                         scale = scale_factors[ch][i][k];
 | |
|                         qindex = alloc_table[j+b];
 | |
|                         bits = ff_mpa_quant_bits[qindex];
 | |
|                         if (bits < 0) {
 | |
|                             /* 3 values at the same time */
 | |
|                             v = get_bits(&s->gb, -bits);
 | |
|                             steps = ff_mpa_quant_steps[qindex];
 | |
|                             s->sb_samples[ch][k * 12 + l + 0][i] =
 | |
|                                 l2_unscale_group(steps, v % steps, scale);
 | |
|                             v = v / steps;
 | |
|                             s->sb_samples[ch][k * 12 + l + 1][i] =
 | |
|                                 l2_unscale_group(steps, v % steps, scale);
 | |
|                             v = v / steps;
 | |
|                             s->sb_samples[ch][k * 12 + l + 2][i] =
 | |
|                                 l2_unscale_group(steps, v, scale);
 | |
|                         } else {
 | |
|                             for(m=0;m<3;m++) {
 | |
|                                 v = get_bits(&s->gb, bits);
 | |
|                                 v = l1_unscale(bits - 1, v, scale);
 | |
|                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits;
 | |
|             }
 | |
|             /* XXX: find a way to avoid this duplication of code */
 | |
|             for(i=bound;i<sblimit;i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 b = bit_alloc[0][i];
 | |
|                 if (b) {
 | |
|                     int mant, scale0, scale1;
 | |
|                     scale0 = scale_factors[0][i][k];
 | |
|                     scale1 = scale_factors[1][i][k];
 | |
|                     qindex = alloc_table[j+b];
 | |
|                     bits = ff_mpa_quant_bits[qindex];
 | |
|                     if (bits < 0) {
 | |
|                         /* 3 values at the same time */
 | |
|                         v = get_bits(&s->gb, -bits);
 | |
|                         steps = ff_mpa_quant_steps[qindex];
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 0][i] =
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 0][i] =
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 1][i] =
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 1][i] =
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         s->sb_samples[0][k * 12 + l + 2][i] =
 | |
|                             l2_unscale_group(steps, v, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 2][i] =
 | |
|                             l2_unscale_group(steps, v, scale1);
 | |
|                     } else {
 | |
|                         for(m=0;m<3;m++) {
 | |
|                             mant = get_bits(&s->gb, bits);
 | |
|                             s->sb_samples[0][k * 12 + l + m][i] =
 | |
|                                 l1_unscale(bits - 1, mant, scale0);
 | |
|                             s->sb_samples[1][k * 12 + l + m][i] =
 | |
|                                 l1_unscale(bits - 1, mant, scale1);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits;
 | |
|             }
 | |
|             /* fill remaining samples to zero */
 | |
|             for(i=sblimit;i<SBLIMIT;i++) {
 | |
|                 for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 3 * 12;
 | |
| }
 | |
| 
 | |
| static inline void lsf_sf_expand(int *slen,
 | |
|                                  int sf, int n1, int n2, int n3)
 | |
| {
 | |
|     if (n3) {
 | |
|         slen[3] = sf % n3;
 | |
|         sf /= n3;
 | |
|     } else {
 | |
|         slen[3] = 0;
 | |
|     }
 | |
|     if (n2) {
 | |
|         slen[2] = sf % n2;
 | |
|         sf /= n2;
 | |
|     } else {
 | |
|         slen[2] = 0;
 | |
|     }
 | |
|     slen[1] = sf % n1;
 | |
|     sf /= n1;
 | |
|     slen[0] = sf;
 | |
| }
 | |
| 
 | |
| static void exponents_from_scale_factors(MPADecodeContext *s,
 | |
|                                          GranuleDef *g,
 | |
|                                          int16_t *exponents)
 | |
| {
 | |
|     const uint8_t *bstab, *pretab;
 | |
|     int len, i, j, k, l, v0, shift, gain, gains[3];
 | |
|     int16_t *exp_ptr;
 | |
| 
 | |
|     exp_ptr = exponents;
 | |
|     gain = g->global_gain - 210;
 | |
|     shift = g->scalefac_scale + 1;
 | |
| 
 | |
|     bstab = band_size_long[s->sample_rate_index];
 | |
|     pretab = mpa_pretab[g->preflag];
 | |
|     for(i=0;i<g->long_end;i++) {
 | |
|         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
 | |
|         len = bstab[i];
 | |
|         for(j=len;j>0;j--)
 | |
|             *exp_ptr++ = v0;
 | |
|     }
 | |
| 
 | |
|     if (g->short_start < 13) {
 | |
|         bstab = band_size_short[s->sample_rate_index];
 | |
|         gains[0] = gain - (g->subblock_gain[0] << 3);
 | |
|         gains[1] = gain - (g->subblock_gain[1] << 3);
 | |
|         gains[2] = gain - (g->subblock_gain[2] << 3);
 | |
|         k = g->long_end;
 | |
|         for(i=g->short_start;i<13;i++) {
 | |
|             len = bstab[i];
 | |
|             for(l=0;l<3;l++) {
 | |
|                 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
 | |
|                 for(j=len;j>0;j--)
 | |
|                 *exp_ptr++ = v0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* handle n = 0 too */
 | |
| static inline int get_bitsz(GetBitContext *s, int n)
 | |
| {
 | |
|     if (n == 0)
 | |
|         return 0;
 | |
|     else
 | |
|         return get_bits(s, n);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
 | |
|     if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
 | |
|         s->gb= s->in_gb;
 | |
|         s->in_gb.buffer=NULL;
 | |
|         assert((get_bits_count(&s->gb) & 7) == 0);
 | |
|         skip_bits_long(&s->gb, *pos - *end_pos);
 | |
|         *end_pos2=
 | |
|         *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
 | |
|         *pos= get_bits_count(&s->gb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
 | |
|                           int16_t *exponents, int end_pos2)
 | |
| {
 | |
|     int s_index;
 | |
|     int i;
 | |
|     int last_pos, bits_left;
 | |
|     VLC *vlc;
 | |
|     int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
 | |
| 
 | |
|     /* low frequencies (called big values) */
 | |
|     s_index = 0;
 | |
|     for(i=0;i<3;i++) {
 | |
|         int j, k, l, linbits;
 | |
|         j = g->region_size[i];
 | |
|         if (j == 0)
 | |
|             continue;
 | |
|         /* select vlc table */
 | |
|         k = g->table_select[i];
 | |
|         l = mpa_huff_data[k][0];
 | |
|         linbits = mpa_huff_data[k][1];
 | |
|         vlc = &huff_vlc[l];
 | |
| 
 | |
|         if(!l){
 | |
|             memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
 | |
|             s_index += 2*j;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* read huffcode and compute each couple */
 | |
|         for(;j>0;j--) {
 | |
|             int exponent, x, y, v;
 | |
|             int pos= get_bits_count(&s->gb);
 | |
| 
 | |
|             if (pos >= end_pos){
 | |
| //                av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
 | |
|                 switch_buffer(s, &pos, &end_pos, &end_pos2);
 | |
| //                av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
 | |
|                 if(pos >= end_pos)
 | |
|                     break;
 | |
|             }
 | |
|             y = get_vlc2(&s->gb, vlc->table, 7, 3);
 | |
| 
 | |
|             if(!y){
 | |
|                 g->sb_hybrid[s_index  ] =
 | |
|                 g->sb_hybrid[s_index+1] = 0;
 | |
|                 s_index += 2;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             exponent= exponents[s_index];
 | |
| 
 | |
|             dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
 | |
|                     i, g->region_size[i] - j, x, y, exponent);
 | |
|             if(y&16){
 | |
|                 x = y >> 5;
 | |
|                 y = y & 0x0f;
 | |
|                 if (x < 15){
 | |
|                     v = expval_table[ exponent ][ x ];
 | |
| //                      v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
 | |
|                 }else{
 | |
|                     x += get_bitsz(&s->gb, linbits);
 | |
|                     v = l3_unscale(x, exponent);
 | |
|                 }
 | |
|                 if (get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|                 g->sb_hybrid[s_index] = v;
 | |
|                 if (y < 15){
 | |
|                     v = expval_table[ exponent ][ y ];
 | |
|                 }else{
 | |
|                     y += get_bitsz(&s->gb, linbits);
 | |
|                     v = l3_unscale(y, exponent);
 | |
|                 }
 | |
|                 if (get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|                 g->sb_hybrid[s_index+1] = v;
 | |
|             }else{
 | |
|                 x = y >> 5;
 | |
|                 y = y & 0x0f;
 | |
|                 x += y;
 | |
|                 if (x < 15){
 | |
|                     v = expval_table[ exponent ][ x ];
 | |
|                 }else{
 | |
|                     x += get_bitsz(&s->gb, linbits);
 | |
|                     v = l3_unscale(x, exponent);
 | |
|                 }
 | |
|                 if (get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|                 g->sb_hybrid[s_index+!!y] = v;
 | |
|                 g->sb_hybrid[s_index+ !y] = 0;
 | |
|             }
 | |
|             s_index+=2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* high frequencies */
 | |
|     vlc = &huff_quad_vlc[g->count1table_select];
 | |
|     last_pos=0;
 | |
|     while (s_index <= 572) {
 | |
|         int pos, code;
 | |
|         pos = get_bits_count(&s->gb);
 | |
|         if (pos >= end_pos) {
 | |
|             if (pos > end_pos2 && last_pos){
 | |
|                 /* some encoders generate an incorrect size for this
 | |
|                    part. We must go back into the data */
 | |
|                 s_index -= 4;
 | |
|                 skip_bits_long(&s->gb, last_pos - pos);
 | |
|                 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
 | |
|                 if(s->error_recognition >= FF_ER_COMPLIANT)
 | |
|                     s_index=0;
 | |
|                 break;
 | |
|             }
 | |
| //                av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
 | |
|             switch_buffer(s, &pos, &end_pos, &end_pos2);
 | |
| //                av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
 | |
|             if(pos >= end_pos)
 | |
|                 break;
 | |
|         }
 | |
|         last_pos= pos;
 | |
| 
 | |
|         code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
 | |
|         dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
 | |
|         g->sb_hybrid[s_index+0]=
 | |
|         g->sb_hybrid[s_index+1]=
 | |
|         g->sb_hybrid[s_index+2]=
 | |
|         g->sb_hybrid[s_index+3]= 0;
 | |
|         while(code){
 | |
|             static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
 | |
|             int v;
 | |
|             int pos= s_index+idxtab[code];
 | |
|             code ^= 8>>idxtab[code];
 | |
|             v = exp_table[ exponents[pos] ];
 | |
| //            v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
 | |
|             if(get_bits1(&s->gb))
 | |
|                 v = -v;
 | |
|             g->sb_hybrid[pos] = v;
 | |
|         }
 | |
|         s_index+=4;
 | |
|     }
 | |
|     /* skip extension bits */
 | |
|     bits_left = end_pos2 - get_bits_count(&s->gb);
 | |
| //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
 | |
|     if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | |
|         s_index=0;
 | |
|     }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | |
|         s_index=0;
 | |
|     }
 | |
|     memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
 | |
|     skip_bits_long(&s->gb, bits_left);
 | |
| 
 | |
|     i= get_bits_count(&s->gb);
 | |
|     switch_buffer(s, &i, &end_pos, &end_pos2);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Reorder short blocks from bitstream order to interleaved order. It
 | |
|    would be faster to do it in parsing, but the code would be far more
 | |
|    complicated */
 | |
| static void reorder_block(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     int i, j, len;
 | |
|     int32_t *ptr, *dst, *ptr1;
 | |
|     int32_t tmp[576];
 | |
| 
 | |
|     if (g->block_type != 2)
 | |
|         return;
 | |
| 
 | |
|     if (g->switch_point) {
 | |
|         if (s->sample_rate_index != 8) {
 | |
|             ptr = g->sb_hybrid + 36;
 | |
|         } else {
 | |
|             ptr = g->sb_hybrid + 48;
 | |
|         }
 | |
|     } else {
 | |
|         ptr = g->sb_hybrid;
 | |
|     }
 | |
| 
 | |
|     for(i=g->short_start;i<13;i++) {
 | |
|         len = band_size_short[s->sample_rate_index][i];
 | |
|         ptr1 = ptr;
 | |
|         dst = tmp;
 | |
|         for(j=len;j>0;j--) {
 | |
|             *dst++ = ptr[0*len];
 | |
|             *dst++ = ptr[1*len];
 | |
|             *dst++ = ptr[2*len];
 | |
|             ptr++;
 | |
|         }
 | |
|         ptr+=2*len;
 | |
|         memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ISQRT2 FIXR(0.70710678118654752440)
 | |
| 
 | |
| static void compute_stereo(MPADecodeContext *s,
 | |
|                            GranuleDef *g0, GranuleDef *g1)
 | |
| {
 | |
|     int i, j, k, l;
 | |
|     int32_t v1, v2;
 | |
|     int sf_max, tmp0, tmp1, sf, len, non_zero_found;
 | |
|     int32_t (*is_tab)[16];
 | |
|     int32_t *tab0, *tab1;
 | |
|     int non_zero_found_short[3];
 | |
| 
 | |
|     /* intensity stereo */
 | |
|     if (s->mode_ext & MODE_EXT_I_STEREO) {
 | |
|         if (!s->lsf) {
 | |
|             is_tab = is_table;
 | |
|             sf_max = 7;
 | |
|         } else {
 | |
|             is_tab = is_table_lsf[g1->scalefac_compress & 1];
 | |
|             sf_max = 16;
 | |
|         }
 | |
| 
 | |
|         tab0 = g0->sb_hybrid + 576;
 | |
|         tab1 = g1->sb_hybrid + 576;
 | |
| 
 | |
|         non_zero_found_short[0] = 0;
 | |
|         non_zero_found_short[1] = 0;
 | |
|         non_zero_found_short[2] = 0;
 | |
|         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
 | |
|         for(i = 12;i >= g1->short_start;i--) {
 | |
|             /* for last band, use previous scale factor */
 | |
|             if (i != 11)
 | |
|                 k -= 3;
 | |
|             len = band_size_short[s->sample_rate_index][i];
 | |
|             for(l=2;l>=0;l--) {
 | |
|                 tab0 -= len;
 | |
|                 tab1 -= len;
 | |
|                 if (!non_zero_found_short[l]) {
 | |
|                     /* test if non zero band. if so, stop doing i-stereo */
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         if (tab1[j] != 0) {
 | |
|                             non_zero_found_short[l] = 1;
 | |
|                             goto found1;
 | |
|                         }
 | |
|                     }
 | |
|                     sf = g1->scale_factors[k + l];
 | |
|                     if (sf >= sf_max)
 | |
|                         goto found1;
 | |
| 
 | |
|                     v1 = is_tab[0][sf];
 | |
|                     v2 = is_tab[1][sf];
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         tmp0 = tab0[j];
 | |
|                         tab0[j] = MULL(tmp0, v1, FRAC_BITS);
 | |
|                         tab1[j] = MULL(tmp0, v2, FRAC_BITS);
 | |
|                     }
 | |
|                 } else {
 | |
|                 found1:
 | |
|                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                         /* lower part of the spectrum : do ms stereo
 | |
|                            if enabled */
 | |
|                         for(j=0;j<len;j++) {
 | |
|                             tmp0 = tab0[j];
 | |
|                             tmp1 = tab1[j];
 | |
|                             tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | |
|                             tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         non_zero_found = non_zero_found_short[0] |
 | |
|             non_zero_found_short[1] |
 | |
|             non_zero_found_short[2];
 | |
| 
 | |
|         for(i = g1->long_end - 1;i >= 0;i--) {
 | |
|             len = band_size_long[s->sample_rate_index][i];
 | |
|             tab0 -= len;
 | |
|             tab1 -= len;
 | |
|             /* test if non zero band. if so, stop doing i-stereo */
 | |
|             if (!non_zero_found) {
 | |
|                 for(j=0;j<len;j++) {
 | |
|                     if (tab1[j] != 0) {
 | |
|                         non_zero_found = 1;
 | |
|                         goto found2;
 | |
|                     }
 | |
|                 }
 | |
|                 /* for last band, use previous scale factor */
 | |
|                 k = (i == 21) ? 20 : i;
 | |
|                 sf = g1->scale_factors[k];
 | |
|                 if (sf >= sf_max)
 | |
|                     goto found2;
 | |
|                 v1 = is_tab[0][sf];
 | |
|                 v2 = is_tab[1][sf];
 | |
|                 for(j=0;j<len;j++) {
 | |
|                     tmp0 = tab0[j];
 | |
|                     tab0[j] = MULL(tmp0, v1, FRAC_BITS);
 | |
|                     tab1[j] = MULL(tmp0, v2, FRAC_BITS);
 | |
|                 }
 | |
|             } else {
 | |
|             found2:
 | |
|                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                     /* lower part of the spectrum : do ms stereo
 | |
|                        if enabled */
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         tmp0 = tab0[j];
 | |
|                         tmp1 = tab1[j];
 | |
|                         tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | |
|                         tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|         /* ms stereo ONLY */
 | |
|         /* NOTE: the 1/sqrt(2) normalization factor is included in the
 | |
|            global gain */
 | |
|         tab0 = g0->sb_hybrid;
 | |
|         tab1 = g1->sb_hybrid;
 | |
|         for(i=0;i<576;i++) {
 | |
|             tmp0 = tab0[i];
 | |
|             tmp1 = tab1[i];
 | |
|             tab0[i] = tmp0 + tmp1;
 | |
|             tab1[i] = tmp0 - tmp1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_antialias_integer(MPADecodeContext *s,
 | |
|                               GranuleDef *g)
 | |
| {
 | |
|     int32_t *ptr, *csa;
 | |
|     int n, i;
 | |
| 
 | |
|     /* we antialias only "long" bands */
 | |
|     if (g->block_type == 2) {
 | |
|         if (!g->switch_point)
 | |
|             return;
 | |
|         /* XXX: check this for 8000Hz case */
 | |
|         n = 1;
 | |
|     } else {
 | |
|         n = SBLIMIT - 1;
 | |
|     }
 | |
| 
 | |
|     ptr = g->sb_hybrid + 18;
 | |
|     for(i = n;i > 0;i--) {
 | |
|         int tmp0, tmp1, tmp2;
 | |
|         csa = &csa_table[0][0];
 | |
| #define INT_AA(j) \
 | |
|             tmp0 = ptr[-1-j];\
 | |
|             tmp1 = ptr[   j];\
 | |
|             tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
 | |
|             ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
 | |
|             ptr[   j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
 | |
| 
 | |
|         INT_AA(0)
 | |
|         INT_AA(1)
 | |
|         INT_AA(2)
 | |
|         INT_AA(3)
 | |
|         INT_AA(4)
 | |
|         INT_AA(5)
 | |
|         INT_AA(6)
 | |
|         INT_AA(7)
 | |
| 
 | |
|         ptr += 18;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_antialias_float(MPADecodeContext *s,
 | |
|                               GranuleDef *g)
 | |
| {
 | |
|     int32_t *ptr;
 | |
|     int n, i;
 | |
| 
 | |
|     /* we antialias only "long" bands */
 | |
|     if (g->block_type == 2) {
 | |
|         if (!g->switch_point)
 | |
|             return;
 | |
|         /* XXX: check this for 8000Hz case */
 | |
|         n = 1;
 | |
|     } else {
 | |
|         n = SBLIMIT - 1;
 | |
|     }
 | |
| 
 | |
|     ptr = g->sb_hybrid + 18;
 | |
|     for(i = n;i > 0;i--) {
 | |
|         float tmp0, tmp1;
 | |
|         float *csa = &csa_table_float[0][0];
 | |
| #define FLOAT_AA(j)\
 | |
|         tmp0= ptr[-1-j];\
 | |
|         tmp1= ptr[   j];\
 | |
|         ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
 | |
|         ptr[   j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
 | |
| 
 | |
|         FLOAT_AA(0)
 | |
|         FLOAT_AA(1)
 | |
|         FLOAT_AA(2)
 | |
|         FLOAT_AA(3)
 | |
|         FLOAT_AA(4)
 | |
|         FLOAT_AA(5)
 | |
|         FLOAT_AA(6)
 | |
|         FLOAT_AA(7)
 | |
| 
 | |
|         ptr += 18;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_imdct(MPADecodeContext *s,
 | |
|                           GranuleDef *g,
 | |
|                           int32_t *sb_samples,
 | |
|                           int32_t *mdct_buf)
 | |
| {
 | |
|     int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
 | |
|     int32_t out2[12];
 | |
|     int i, j, mdct_long_end, v, sblimit;
 | |
| 
 | |
|     /* find last non zero block */
 | |
|     ptr = g->sb_hybrid + 576;
 | |
|     ptr1 = g->sb_hybrid + 2 * 18;
 | |
|     while (ptr >= ptr1) {
 | |
|         ptr -= 6;
 | |
|         v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
 | |
|         if (v != 0)
 | |
|             break;
 | |
|     }
 | |
|     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
 | |
| 
 | |
|     if (g->block_type == 2) {
 | |
|         /* XXX: check for 8000 Hz */
 | |
|         if (g->switch_point)
 | |
|             mdct_long_end = 2;
 | |
|         else
 | |
|             mdct_long_end = 0;
 | |
|     } else {
 | |
|         mdct_long_end = sblimit;
 | |
|     }
 | |
| 
 | |
|     buf = mdct_buf;
 | |
|     ptr = g->sb_hybrid;
 | |
|     for(j=0;j<mdct_long_end;j++) {
 | |
|         /* apply window & overlap with previous buffer */
 | |
|         out_ptr = sb_samples + j;
 | |
|         /* select window */
 | |
|         if (g->switch_point && j < 2)
 | |
|             win1 = mdct_win[0];
 | |
|         else
 | |
|             win1 = mdct_win[g->block_type];
 | |
|         /* select frequency inversion */
 | |
|         win = win1 + ((4 * 36) & -(j & 1));
 | |
|         imdct36(out_ptr, buf, ptr, win);
 | |
|         out_ptr += 18*SBLIMIT;
 | |
|         ptr += 18;
 | |
|         buf += 18;
 | |
|     }
 | |
|     for(j=mdct_long_end;j<sblimit;j++) {
 | |
|         /* select frequency inversion */
 | |
|         win = mdct_win[2] + ((4 * 36) & -(j & 1));
 | |
|         out_ptr = sb_samples + j;
 | |
| 
 | |
|         for(i=0; i<6; i++){
 | |
|             *out_ptr = buf[i];
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 0);
 | |
|         for(i=0;i<6;i++) {
 | |
|             *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
 | |
|             buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 1);
 | |
|         for(i=0;i<6;i++) {
 | |
|             *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
 | |
|             buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         imdct12(out2, ptr + 2);
 | |
|         for(i=0;i<6;i++) {
 | |
|             buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
 | |
|             buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
 | |
|             buf[i + 6*2] = 0;
 | |
|         }
 | |
|         ptr += 18;
 | |
|         buf += 18;
 | |
|     }
 | |
|     /* zero bands */
 | |
|     for(j=sblimit;j<SBLIMIT;j++) {
 | |
|         /* overlap */
 | |
|         out_ptr = sb_samples + j;
 | |
|         for(i=0;i<18;i++) {
 | |
|             *out_ptr = buf[i];
 | |
|             buf[i] = 0;
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         buf += 18;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* main layer3 decoding function */
 | |
| static int mp_decode_layer3(MPADecodeContext *s)
 | |
| {
 | |
|     int nb_granules, main_data_begin, private_bits;
 | |
|     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
 | |
|     GranuleDef *g;
 | |
|     int16_t exponents[576];
 | |
| 
 | |
|     /* read side info */
 | |
|     if (s->lsf) {
 | |
|         main_data_begin = get_bits(&s->gb, 8);
 | |
|         private_bits = get_bits(&s->gb, s->nb_channels);
 | |
|         nb_granules = 1;
 | |
|     } else {
 | |
|         main_data_begin = get_bits(&s->gb, 9);
 | |
|         if (s->nb_channels == 2)
 | |
|             private_bits = get_bits(&s->gb, 3);
 | |
|         else
 | |
|             private_bits = get_bits(&s->gb, 5);
 | |
|         nb_granules = 2;
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
 | |
|             s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(gr=0;gr<nb_granules;gr++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
 | |
|             g = &s->granules[ch][gr];
 | |
|             g->part2_3_length = get_bits(&s->gb, 12);
 | |
|             g->big_values = get_bits(&s->gb, 9);
 | |
|             if(g->big_values > 288){
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             g->global_gain = get_bits(&s->gb, 8);
 | |
|             /* if MS stereo only is selected, we precompute the
 | |
|                1/sqrt(2) renormalization factor */
 | |
|             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
 | |
|                 MODE_EXT_MS_STEREO)
 | |
|                 g->global_gain -= 2;
 | |
|             if (s->lsf)
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 9);
 | |
|             else
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 4);
 | |
|             blocksplit_flag = get_bits1(&s->gb);
 | |
|             if (blocksplit_flag) {
 | |
|                 g->block_type = get_bits(&s->gb, 2);
 | |
|                 if (g->block_type == 0){
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
 | |
|                     return -1;
 | |
|                 }
 | |
|                 g->switch_point = get_bits1(&s->gb);
 | |
|                 for(i=0;i<2;i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 for(i=0;i<3;i++)
 | |
|                     g->subblock_gain[i] = get_bits(&s->gb, 3);
 | |
|                 ff_init_short_region(s, g);
 | |
|             } else {
 | |
|                 int region_address1, region_address2;
 | |
|                 g->block_type = 0;
 | |
|                 g->switch_point = 0;
 | |
|                 for(i=0;i<3;i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 /* compute huffman coded region sizes */
 | |
|                 region_address1 = get_bits(&s->gb, 4);
 | |
|                 region_address2 = get_bits(&s->gb, 3);
 | |
|                 dprintf(s->avctx, "region1=%d region2=%d\n",
 | |
|                         region_address1, region_address2);
 | |
|                 ff_init_long_region(s, g, region_address1, region_address2);
 | |
|             }
 | |
|             ff_region_offset2size(g);
 | |
|             ff_compute_band_indexes(s, g);
 | |
| 
 | |
|             g->preflag = 0;
 | |
|             if (!s->lsf)
 | |
|                 g->preflag = get_bits1(&s->gb);
 | |
|             g->scalefac_scale = get_bits1(&s->gb);
 | |
|             g->count1table_select = get_bits1(&s->gb);
 | |
|             dprintf(s->avctx, "block_type=%d switch_point=%d\n",
 | |
|                     g->block_type, g->switch_point);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   if (!s->adu_mode) {
 | |
|     const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
 | |
|     assert((get_bits_count(&s->gb) & 7) == 0);
 | |
|     /* now we get bits from the main_data_begin offset */
 | |
|     dprintf(s->avctx, "seekback: %d\n", main_data_begin);
 | |
| //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
 | |
| 
 | |
|     memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
 | |
|     s->in_gb= s->gb;
 | |
|         init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
 | |
|         skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
 | |
|   }
 | |
| 
 | |
|     for(gr=0;gr<nb_granules;gr++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             g = &s->granules[ch][gr];
 | |
|             if(get_bits_count(&s->gb)<0){
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
 | |
|                                             main_data_begin, s->last_buf_size, gr);
 | |
|                 skip_bits_long(&s->gb, g->part2_3_length);
 | |
|                 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
 | |
|                 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
 | |
|                     skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
 | |
|                     s->gb= s->in_gb;
 | |
|                     s->in_gb.buffer=NULL;
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             bits_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|             if (!s->lsf) {
 | |
|                 uint8_t *sc;
 | |
|                 int slen, slen1, slen2;
 | |
| 
 | |
|                 /* MPEG1 scale factors */
 | |
|                 slen1 = slen_table[0][g->scalefac_compress];
 | |
|                 slen2 = slen_table[1][g->scalefac_compress];
 | |
|                 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
 | |
|                 if (g->block_type == 2) {
 | |
|                     n = g->switch_point ? 17 : 18;
 | |
|                     j = 0;
 | |
|                     if(slen1){
 | |
|                         for(i=0;i<n;i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, slen1);
 | |
|                     }else{
 | |
|                         for(i=0;i<n;i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                     if(slen2){
 | |
|                         for(i=0;i<18;i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, slen2);
 | |
|                         for(i=0;i<3;i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }else{
 | |
|                         for(i=0;i<21;i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     sc = s->granules[ch][0].scale_factors;
 | |
|                     j = 0;
 | |
|                     for(k=0;k<4;k++) {
 | |
|                         n = (k == 0 ? 6 : 5);
 | |
|                         if ((g->scfsi & (0x8 >> k)) == 0) {
 | |
|                             slen = (k < 2) ? slen1 : slen2;
 | |
|                             if(slen){
 | |
|                                 for(i=0;i<n;i++)
 | |
|                                     g->scale_factors[j++] = get_bits(&s->gb, slen);
 | |
|                             }else{
 | |
|                                 for(i=0;i<n;i++)
 | |
|                                     g->scale_factors[j++] = 0;
 | |
|                             }
 | |
|                         } else {
 | |
|                             /* simply copy from last granule */
 | |
|                             for(i=0;i<n;i++) {
 | |
|                                 g->scale_factors[j] = sc[j];
 | |
|                                 j++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     g->scale_factors[j++] = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 int tindex, tindex2, slen[4], sl, sf;
 | |
| 
 | |
|                 /* LSF scale factors */
 | |
|                 if (g->block_type == 2) {
 | |
|                     tindex = g->switch_point ? 2 : 1;
 | |
|                 } else {
 | |
|                     tindex = 0;
 | |
|                 }
 | |
|                 sf = g->scalefac_compress;
 | |
|                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
 | |
|                     /* intensity stereo case */
 | |
|                     sf >>= 1;
 | |
|                     if (sf < 180) {
 | |
|                         lsf_sf_expand(slen, sf, 6, 6, 0);
 | |
|                         tindex2 = 3;
 | |
|                     } else if (sf < 244) {
 | |
|                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
 | |
|                         tindex2 = 4;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
 | |
|                         tindex2 = 5;
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* normal case */
 | |
|                     if (sf < 400) {
 | |
|                         lsf_sf_expand(slen, sf, 5, 4, 4);
 | |
|                         tindex2 = 0;
 | |
|                     } else if (sf < 500) {
 | |
|                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
 | |
|                         tindex2 = 1;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
 | |
|                         tindex2 = 2;
 | |
|                         g->preflag = 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 j = 0;
 | |
|                 for(k=0;k<4;k++) {
 | |
|                     n = lsf_nsf_table[tindex2][tindex][k];
 | |
|                     sl = slen[k];
 | |
|                     if(sl){
 | |
|                         for(i=0;i<n;i++)
 | |
|                             g->scale_factors[j++] = get_bits(&s->gb, sl);
 | |
|                     }else{
 | |
|                         for(i=0;i<n;i++)
 | |
|                             g->scale_factors[j++] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 /* XXX: should compute exact size */
 | |
|                 for(;j<40;j++)
 | |
|                     g->scale_factors[j] = 0;
 | |
|             }
 | |
| 
 | |
|             exponents_from_scale_factors(s, g, exponents);
 | |
| 
 | |
|             /* read Huffman coded residue */
 | |
|             huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
 | |
|         } /* ch */
 | |
| 
 | |
|         if (s->nb_channels == 2)
 | |
|             compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
 | |
| 
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             g = &s->granules[ch][gr];
 | |
| 
 | |
|             reorder_block(s, g);
 | |
|             s->compute_antialias(s, g);
 | |
|             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
 | |
|         }
 | |
|     } /* gr */
 | |
|     if(get_bits_count(&s->gb)<0)
 | |
|         skip_bits_long(&s->gb, -get_bits_count(&s->gb));
 | |
|     return nb_granules * 18;
 | |
| }
 | |
| 
 | |
| static int mp_decode_frame(MPADecodeContext *s,
 | |
|                            OUT_INT *samples, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     int i, nb_frames, ch;
 | |
|     OUT_INT *samples_ptr;
 | |
| 
 | |
|     init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
 | |
| 
 | |
|     /* skip error protection field */
 | |
|     if (s->error_protection)
 | |
|         skip_bits(&s->gb, 16);
 | |
| 
 | |
|     dprintf(s->avctx, "frame %d:\n", s->frame_count);
 | |
|     switch(s->layer) {
 | |
|     case 1:
 | |
|         s->avctx->frame_size = 384;
 | |
|         nb_frames = mp_decode_layer1(s);
 | |
|         break;
 | |
|     case 2:
 | |
|         s->avctx->frame_size = 1152;
 | |
|         nb_frames = mp_decode_layer2(s);
 | |
|         break;
 | |
|     case 3:
 | |
|         s->avctx->frame_size = s->lsf ? 576 : 1152;
 | |
|     default:
 | |
|         nb_frames = mp_decode_layer3(s);
 | |
| 
 | |
|         s->last_buf_size=0;
 | |
|         if(s->in_gb.buffer){
 | |
|             align_get_bits(&s->gb);
 | |
|             i= get_bits_left(&s->gb)>>3;
 | |
|             if(i >= 0 && i <= BACKSTEP_SIZE){
 | |
|                 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
 | |
|                 s->last_buf_size=i;
 | |
|             }else
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
 | |
|             s->gb= s->in_gb;
 | |
|             s->in_gb.buffer= NULL;
 | |
|         }
 | |
| 
 | |
|         align_get_bits(&s->gb);
 | |
|         assert((get_bits_count(&s->gb) & 7) == 0);
 | |
|         i= get_bits_left(&s->gb)>>3;
 | |
| 
 | |
|         if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
 | |
|             if(i<0)
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
 | |
|             i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
 | |
|         }
 | |
|         assert(i <= buf_size - HEADER_SIZE && i>= 0);
 | |
|         memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
 | |
|         s->last_buf_size += i;
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* apply the synthesis filter */
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         samples_ptr = samples + ch;
 | |
|         for(i=0;i<nb_frames;i++) {
 | |
|             ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
 | |
|                          ff_mpa_synth_window, &s->dither_state,
 | |
|                          samples_ptr, s->nb_channels,
 | |
|                          s->sb_samples[ch][i]);
 | |
|             samples_ptr += 32 * s->nb_channels;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
 | |
| }
 | |
| 
 | |
| static int decode_frame(AVCodecContext * avctx,
 | |
|                         void *data, int *data_size,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     uint32_t header;
 | |
|     int out_size;
 | |
|     OUT_INT *out_samples = data;
 | |
| 
 | |
|     if(buf_size < HEADER_SIZE)
 | |
|         return -1;
 | |
| 
 | |
|     header = AV_RB32(buf);
 | |
|     if(ff_mpa_check_header(header) < 0){
 | |
|         av_log(avctx, AV_LOG_ERROR, "Header missing\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
 | |
|         /* free format: prepare to compute frame size */
 | |
|         s->frame_size = -1;
 | |
|         return -1;
 | |
|     }
 | |
|     /* update codec info */
 | |
|     avctx->channels = s->nb_channels;
 | |
|     avctx->bit_rate = s->bit_rate;
 | |
|     avctx->sub_id = s->layer;
 | |
| 
 | |
|     if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
 | |
|         return -1;
 | |
|     *data_size = 0;
 | |
| 
 | |
|     if(s->frame_size<=0 || s->frame_size > buf_size){
 | |
|         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|         return -1;
 | |
|     }else if(s->frame_size < buf_size){
 | |
|         av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
 | |
|         buf_size= s->frame_size;
 | |
|     }
 | |
| 
 | |
|     out_size = mp_decode_frame(s, out_samples, buf, buf_size);
 | |
|     if(out_size>=0){
 | |
|         *data_size = out_size;
 | |
|         avctx->sample_rate = s->sample_rate;
 | |
|         //FIXME maybe move the other codec info stuff from above here too
 | |
|     }else
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
 | |
|     s->frame_size = 0;
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| static void flush(AVCodecContext *avctx){
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     memset(s->synth_buf, 0, sizeof(s->synth_buf));
 | |
|     s->last_buf_size= 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_MP3ADU_DECODER
 | |
| static int decode_frame_adu(AVCodecContext * avctx,
 | |
|                         void *data, int *data_size,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     uint32_t header;
 | |
|     int len, out_size;
 | |
|     OUT_INT *out_samples = data;
 | |
| 
 | |
|     len = buf_size;
 | |
| 
 | |
|     // Discard too short frames
 | |
|     if (buf_size < HEADER_SIZE) {
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (len > MPA_MAX_CODED_FRAME_SIZE)
 | |
|         len = MPA_MAX_CODED_FRAME_SIZE;
 | |
| 
 | |
|     // Get header and restore sync word
 | |
|     header = AV_RB32(buf) | 0xffe00000;
 | |
| 
 | |
|     if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
 | |
|     /* update codec info */
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->channels = s->nb_channels;
 | |
|     avctx->bit_rate = s->bit_rate;
 | |
|     avctx->sub_id = s->layer;
 | |
| 
 | |
|     s->frame_size = len;
 | |
| 
 | |
|     if (avctx->parse_only) {
 | |
|         out_size = buf_size;
 | |
|     } else {
 | |
|         out_size = mp_decode_frame(s, out_samples, buf, buf_size);
 | |
|     }
 | |
| 
 | |
|     *data_size = out_size;
 | |
|     return buf_size;
 | |
| }
 | |
| #endif /* CONFIG_MP3ADU_DECODER */
 | |
| 
 | |
| #if CONFIG_MP3ON4_DECODER
 | |
| 
 | |
| /**
 | |
|  * Context for MP3On4 decoder
 | |
|  */
 | |
| typedef struct MP3On4DecodeContext {
 | |
|     int frames;   ///< number of mp3 frames per block (number of mp3 decoder instances)
 | |
|     int syncword; ///< syncword patch
 | |
|     const uint8_t *coff; ///< channels offsets in output buffer
 | |
|     MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
 | |
| } MP3On4DecodeContext;
 | |
| 
 | |
| #include "mpeg4audio.h"
 | |
| 
 | |
| /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
 | |
| static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5};   /* number of mp3 decoder instances */
 | |
| /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
 | |
| static const uint8_t chan_offset[8][5] = {
 | |
|     {0},
 | |
|     {0},            // C
 | |
|     {0},            // FLR
 | |
|     {2,0},          // C FLR
 | |
|     {2,0,3},        // C FLR BS
 | |
|     {4,0,2},        // C FLR BLRS
 | |
|     {4,0,2,5},      // C FLR BLRS LFE
 | |
|     {4,0,2,6,5},    // C FLR BLRS BLR LFE
 | |
| };
 | |
| 
 | |
| 
 | |
| static int decode_init_mp3on4(AVCodecContext * avctx)
 | |
| {
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     MPEG4AudioConfig cfg;
 | |
|     int i;
 | |
| 
 | |
|     if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
 | |
|     if (!cfg.chan_config || cfg.chan_config > 7) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
 | |
|         return -1;
 | |
|     }
 | |
|     s->frames = mp3Frames[cfg.chan_config];
 | |
|     s->coff = chan_offset[cfg.chan_config];
 | |
|     avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
 | |
| 
 | |
|     if (cfg.sample_rate < 16000)
 | |
|         s->syncword = 0xffe00000;
 | |
|     else
 | |
|         s->syncword = 0xfff00000;
 | |
| 
 | |
|     /* Init the first mp3 decoder in standard way, so that all tables get builded
 | |
|      * We replace avctx->priv_data with the context of the first decoder so that
 | |
|      * decode_init() does not have to be changed.
 | |
|      * Other decoders will be initialized here copying data from the first context
 | |
|      */
 | |
|     // Allocate zeroed memory for the first decoder context
 | |
|     s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
 | |
|     // Put decoder context in place to make init_decode() happy
 | |
|     avctx->priv_data = s->mp3decctx[0];
 | |
|     decode_init(avctx);
 | |
|     // Restore mp3on4 context pointer
 | |
|     avctx->priv_data = s;
 | |
|     s->mp3decctx[0]->adu_mode = 1; // Set adu mode
 | |
| 
 | |
|     /* Create a separate codec/context for each frame (first is already ok).
 | |
|      * Each frame is 1 or 2 channels - up to 5 frames allowed
 | |
|      */
 | |
|     for (i = 1; i < s->frames; i++) {
 | |
|         s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
 | |
|         s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
 | |
|         s->mp3decctx[i]->adu_mode = 1;
 | |
|         s->mp3decctx[i]->avctx = avctx;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
 | |
| {
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->frames; i++)
 | |
|         if (s->mp3decctx[i])
 | |
|             av_free(s->mp3decctx[i]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int decode_frame_mp3on4(AVCodecContext * avctx,
 | |
|                         void *data, int *data_size,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     MP3On4DecodeContext *s = avctx->priv_data;
 | |
|     MPADecodeContext *m;
 | |
|     int fsize, len = buf_size, out_size = 0;
 | |
|     uint32_t header;
 | |
|     OUT_INT *out_samples = data;
 | |
|     OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
 | |
|     OUT_INT *outptr, *bp;
 | |
|     int fr, j, n;
 | |
| 
 | |
|     if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
 | |
|         return -1;
 | |
| 
 | |
|     *data_size = 0;
 | |
|     // Discard too short frames
 | |
|     if (buf_size < HEADER_SIZE)
 | |
|         return -1;
 | |
| 
 | |
|     // If only one decoder interleave is not needed
 | |
|     outptr = s->frames == 1 ? out_samples : decoded_buf;
 | |
| 
 | |
|     avctx->bit_rate = 0;
 | |
| 
 | |
|     for (fr = 0; fr < s->frames; fr++) {
 | |
|         fsize = AV_RB16(buf) >> 4;
 | |
|         fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
 | |
|         m = s->mp3decctx[fr];
 | |
|         assert (m != NULL);
 | |
| 
 | |
|         header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
 | |
| 
 | |
|         if (ff_mpa_check_header(header) < 0) // Bad header, discard block
 | |
|             break;
 | |
| 
 | |
|         ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
 | |
|         out_size += mp_decode_frame(m, outptr, buf, fsize);
 | |
|         buf += fsize;
 | |
|         len -= fsize;
 | |
| 
 | |
|         if(s->frames > 1) {
 | |
|             n = m->avctx->frame_size*m->nb_channels;
 | |
|             /* interleave output data */
 | |
|             bp = out_samples + s->coff[fr];
 | |
|             if(m->nb_channels == 1) {
 | |
|                 for(j = 0; j < n; j++) {
 | |
|                     *bp = decoded_buf[j];
 | |
|                     bp += avctx->channels;
 | |
|                 }
 | |
|             } else {
 | |
|                 for(j = 0; j < n; j++) {
 | |
|                     bp[0] = decoded_buf[j++];
 | |
|                     bp[1] = decoded_buf[j];
 | |
|                     bp += avctx->channels;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         avctx->bit_rate += m->bit_rate;
 | |
|     }
 | |
| 
 | |
|     /* update codec info */
 | |
|     avctx->sample_rate = s->mp3decctx[0]->sample_rate;
 | |
| 
 | |
|     *data_size = out_size;
 | |
|     return buf_size;
 | |
| }
 | |
| #endif /* CONFIG_MP3ON4_DECODER */
 | |
| 
 | |
| #if CONFIG_MP1_DECODER
 | |
| AVCodec mp1_decoder =
 | |
| {
 | |
|     "mp1",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP1,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame,
 | |
|     CODEC_CAP_PARSE_ONLY,
 | |
|     .flush= flush,
 | |
|     .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP2_DECODER
 | |
| AVCodec mp2_decoder =
 | |
| {
 | |
|     "mp2",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP2,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame,
 | |
|     CODEC_CAP_PARSE_ONLY,
 | |
|     .flush= flush,
 | |
|     .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3_DECODER
 | |
| AVCodec mp3_decoder =
 | |
| {
 | |
|     "mp3",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP3,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame,
 | |
|     CODEC_CAP_PARSE_ONLY,
 | |
|     .flush= flush,
 | |
|     .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3ADU_DECODER
 | |
| AVCodec mp3adu_decoder =
 | |
| {
 | |
|     "mp3adu",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP3ADU,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame_adu,
 | |
|     CODEC_CAP_PARSE_ONLY,
 | |
|     .flush= flush,
 | |
|     .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
 | |
| };
 | |
| #endif
 | |
| #if CONFIG_MP3ON4_DECODER
 | |
| AVCodec mp3on4_decoder =
 | |
| {
 | |
|     "mp3on4",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP3ON4,
 | |
|     sizeof(MP3On4DecodeContext),
 | |
|     decode_init_mp3on4,
 | |
|     NULL,
 | |
|     decode_close_mp3on4,
 | |
|     decode_frame_mp3on4,
 | |
|     .flush= flush,
 | |
|     .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
 | |
| };
 | |
| #endif
 |