lavfi: add filter dnn_detect for object detection
Below are the example steps to do object detection: 1. download and install l_openvino_toolkit_p_2021.1.110.tgz from https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html or, we can get source code (tag 2021.1), build and install. 2. export LD_LIBRARY_PATH with openvino settings, for example: .../deployment_tools/inference_engine/lib/intel64/:.../deployment_tools/inference_engine/external/tbb/lib/ 3. rebuild ffmpeg from source code with configure option: --enable-libopenvino --extra-cflags='-I.../deployment_tools/inference_engine/include/' --extra-ldflags='-L.../deployment_tools/inference_engine/lib/intel64' 4. download model files and test image wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.bin wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.xml wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/face-detection-adas-0001.label wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/images/cici.jpg 5. run ffmpeg with: ./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,showinfo -f null - We'll see the detect result as below: [Parsed_showinfo_1 @ 0x560c21ecbe40] side data - detection bounding boxes: [Parsed_showinfo_1 @ 0x560c21ecbe40] source: face-detection-adas-0001.xml [Parsed_showinfo_1 @ 0x560c21ecbe40] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000. [Parsed_showinfo_1 @ 0x560c21ecbe40] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000. There are two faces detected with confidence 100% and 69.17%. Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
		
							parent
							
								
									e942b4bbaa
								
							
						
					
					
						commit
						aa9ffdaa1e
					
				
							
								
								
									
										1
									
								
								configure
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								configure
									
									
									
									
										vendored
									
									
								
							@ -3555,6 +3555,7 @@ derain_filter_select="dnn"
 | 
				
			|||||||
deshake_filter_select="pixelutils"
 | 
					deshake_filter_select="pixelutils"
 | 
				
			||||||
deshake_opencl_filter_deps="opencl"
 | 
					deshake_opencl_filter_deps="opencl"
 | 
				
			||||||
dilation_opencl_filter_deps="opencl"
 | 
					dilation_opencl_filter_deps="opencl"
 | 
				
			||||||
 | 
					dnn_detect_filter_select="dnn"
 | 
				
			||||||
dnn_processing_filter_select="dnn"
 | 
					dnn_processing_filter_select="dnn"
 | 
				
			||||||
drawtext_filter_deps="libfreetype"
 | 
					drawtext_filter_deps="libfreetype"
 | 
				
			||||||
drawtext_filter_suggest="libfontconfig libfribidi"
 | 
					drawtext_filter_suggest="libfontconfig libfribidi"
 | 
				
			||||||
 | 
				
			|||||||
@ -10127,6 +10127,46 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
 | 
				
			|||||||
@end example
 | 
					@end example
 | 
				
			||||||
@end itemize
 | 
					@end itemize
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@section dnn_detect
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Do object detection with deep neural networks.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The filter accepts the following options:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@table @option
 | 
				
			||||||
 | 
					@item dnn_backend
 | 
				
			||||||
 | 
					Specify which DNN backend to use for model loading and execution. This option accepts
 | 
				
			||||||
 | 
					only openvino now, tensorflow backends will be added.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item model
 | 
				
			||||||
 | 
					Set path to model file specifying network architecture and its parameters.
 | 
				
			||||||
 | 
					Note that different backends use different file formats.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item input
 | 
				
			||||||
 | 
					Set the input name of the dnn network.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item output
 | 
				
			||||||
 | 
					Set the output name of the dnn network.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item confidence
 | 
				
			||||||
 | 
					Set the confidence threshold (default: 0.5).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item labels
 | 
				
			||||||
 | 
					Set path to label file specifying the mapping between label id and name.
 | 
				
			||||||
 | 
					Each label name is written in one line, tailing spaces and empty lines are skipped.
 | 
				
			||||||
 | 
					The first line is the name of label id 0 (usually it is 'background'),
 | 
				
			||||||
 | 
					and the second line is the name of label id 1, etc.
 | 
				
			||||||
 | 
					The label id is considered as name if the label file is not provided.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item backend_configs
 | 
				
			||||||
 | 
					Set the configs to be passed into backend
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@item async
 | 
				
			||||||
 | 
					use DNN async execution if set (default: set),
 | 
				
			||||||
 | 
					roll back to sync execution if the backend does not support async.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@end table
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@anchor{dnn_processing}
 | 
					@anchor{dnn_processing}
 | 
				
			||||||
@section dnn_processing
 | 
					@section dnn_processing
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -245,6 +245,7 @@ OBJS-$(CONFIG_DILATION_FILTER)               += vf_neighbor.o
 | 
				
			|||||||
OBJS-$(CONFIG_DILATION_OPENCL_FILTER)        += vf_neighbor_opencl.o opencl.o \
 | 
					OBJS-$(CONFIG_DILATION_OPENCL_FILTER)        += vf_neighbor_opencl.o opencl.o \
 | 
				
			||||||
                                                opencl/neighbor.o
 | 
					                                                opencl/neighbor.o
 | 
				
			||||||
OBJS-$(CONFIG_DISPLACE_FILTER)               += vf_displace.o framesync.o
 | 
					OBJS-$(CONFIG_DISPLACE_FILTER)               += vf_displace.o framesync.o
 | 
				
			||||||
 | 
					OBJS-$(CONFIG_DNN_DETECT_FILTER)             += vf_dnn_detect.o
 | 
				
			||||||
OBJS-$(CONFIG_DNN_PROCESSING_FILTER)         += vf_dnn_processing.o
 | 
					OBJS-$(CONFIG_DNN_PROCESSING_FILTER)         += vf_dnn_processing.o
 | 
				
			||||||
OBJS-$(CONFIG_DOUBLEWEAVE_FILTER)            += vf_weave.o
 | 
					OBJS-$(CONFIG_DOUBLEWEAVE_FILTER)            += vf_weave.o
 | 
				
			||||||
OBJS-$(CONFIG_DRAWBOX_FILTER)                += vf_drawbox.o
 | 
					OBJS-$(CONFIG_DRAWBOX_FILTER)                += vf_drawbox.o
 | 
				
			||||||
 | 
				
			|||||||
@ -230,6 +230,7 @@ extern AVFilter ff_vf_detelecine;
 | 
				
			|||||||
extern AVFilter ff_vf_dilation;
 | 
					extern AVFilter ff_vf_dilation;
 | 
				
			||||||
extern AVFilter ff_vf_dilation_opencl;
 | 
					extern AVFilter ff_vf_dilation_opencl;
 | 
				
			||||||
extern AVFilter ff_vf_displace;
 | 
					extern AVFilter ff_vf_displace;
 | 
				
			||||||
 | 
					extern AVFilter ff_vf_dnn_detect;
 | 
				
			||||||
extern AVFilter ff_vf_dnn_processing;
 | 
					extern AVFilter ff_vf_dnn_processing;
 | 
				
			||||||
extern AVFilter ff_vf_doubleweave;
 | 
					extern AVFilter ff_vf_doubleweave;
 | 
				
			||||||
extern AVFilter ff_vf_drawbox;
 | 
					extern AVFilter ff_vf_drawbox;
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										421
									
								
								libavfilter/vf_dnn_detect.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										421
									
								
								libavfilter/vf_dnn_detect.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,421 @@
 | 
				
			|||||||
 | 
					/*
 | 
				
			||||||
 | 
					 * This file is part of FFmpeg.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * FFmpeg is free software; you can redistribute it and/or
 | 
				
			||||||
 | 
					 * modify it under the terms of the GNU Lesser General Public
 | 
				
			||||||
 | 
					 * License as published by the Free Software Foundation; either
 | 
				
			||||||
 | 
					 * version 2.1 of the License, or (at your option) any later version.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * FFmpeg is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
				
			||||||
 | 
					 * Lesser General Public License for more details.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * You should have received a copy of the GNU Lesser General Public
 | 
				
			||||||
 | 
					 * License along with FFmpeg; if not, write to the Free Software
 | 
				
			||||||
 | 
					 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/**
 | 
				
			||||||
 | 
					 * @file
 | 
				
			||||||
 | 
					 * implementing an object detecting filter using deep learning networks.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include "libavformat/avio.h"
 | 
				
			||||||
 | 
					#include "libavutil/opt.h"
 | 
				
			||||||
 | 
					#include "libavutil/pixdesc.h"
 | 
				
			||||||
 | 
					#include "libavutil/avassert.h"
 | 
				
			||||||
 | 
					#include "libavutil/imgutils.h"
 | 
				
			||||||
 | 
					#include "filters.h"
 | 
				
			||||||
 | 
					#include "dnn_filter_common.h"
 | 
				
			||||||
 | 
					#include "formats.h"
 | 
				
			||||||
 | 
					#include "internal.h"
 | 
				
			||||||
 | 
					#include "libavutil/time.h"
 | 
				
			||||||
 | 
					#include "libavutil/avstring.h"
 | 
				
			||||||
 | 
					#include "libavutil/detection_bbox.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef struct DnnDetectContext {
 | 
				
			||||||
 | 
					    const AVClass *class;
 | 
				
			||||||
 | 
					    DnnContext dnnctx;
 | 
				
			||||||
 | 
					    float confidence;
 | 
				
			||||||
 | 
					    char *labels_filename;
 | 
				
			||||||
 | 
					    char **labels;
 | 
				
			||||||
 | 
					    int label_count;
 | 
				
			||||||
 | 
					} DnnDetectContext;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define OFFSET(x) offsetof(DnnDetectContext, dnnctx.x)
 | 
				
			||||||
 | 
					#define OFFSET2(x) offsetof(DnnDetectContext, x)
 | 
				
			||||||
 | 
					#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
 | 
				
			||||||
 | 
					static const AVOption dnn_detect_options[] = {
 | 
				
			||||||
 | 
					    { "dnn_backend", "DNN backend",                OFFSET(backend_type),     AV_OPT_TYPE_INT,       { .i64 = 2 },    INT_MIN, INT_MAX, FLAGS, "backend" },
 | 
				
			||||||
 | 
					#if (CONFIG_LIBOPENVINO == 1)
 | 
				
			||||||
 | 
					    { "openvino",    "openvino backend flag",      0,                        AV_OPT_TYPE_CONST,     { .i64 = 2 },    0, 0, FLAGS, "backend" },
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					    DNN_COMMON_OPTIONS
 | 
				
			||||||
 | 
					    { "confidence",  "threshold of confidence",    OFFSET2(confidence),      AV_OPT_TYPE_FLOAT,     { .dbl = 0.5 },  0, 1, FLAGS},
 | 
				
			||||||
 | 
					    { "labels",      "path to labels file",        OFFSET2(labels_filename), AV_OPT_TYPE_STRING,    { .str = NULL }, 0, 0, FLAGS },
 | 
				
			||||||
 | 
					    { NULL }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					AVFILTER_DEFINE_CLASS(dnn_detect);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_post_proc(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = filter_ctx->priv;
 | 
				
			||||||
 | 
					    float conf_threshold = ctx->confidence;
 | 
				
			||||||
 | 
					    int proposal_count = output->height;
 | 
				
			||||||
 | 
					    int detect_size = output->width;
 | 
				
			||||||
 | 
					    float *detections = output->data;
 | 
				
			||||||
 | 
					    int nb_bboxes = 0;
 | 
				
			||||||
 | 
					    AVFrameSideData *sd;
 | 
				
			||||||
 | 
					    AVDetectionBBox *bbox;
 | 
				
			||||||
 | 
					    AVDetectionBBoxHeader *header;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
 | 
				
			||||||
 | 
					    if (sd) {
 | 
				
			||||||
 | 
					        av_log(filter_ctx, AV_LOG_ERROR, "already have bounding boxes in side data.\n");
 | 
				
			||||||
 | 
					        return -1;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for (int i = 0; i < proposal_count; ++i) {
 | 
				
			||||||
 | 
					        float conf = detections[i * detect_size + 2];
 | 
				
			||||||
 | 
					        if (conf < conf_threshold) {
 | 
				
			||||||
 | 
					            continue;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        nb_bboxes++;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (nb_bboxes == 0) {
 | 
				
			||||||
 | 
					        av_log(filter_ctx, AV_LOG_VERBOSE, "nothing detected in this frame.\n");
 | 
				
			||||||
 | 
					        return 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    header = av_detection_bbox_create_side_data(frame, nb_bboxes);
 | 
				
			||||||
 | 
					    if (!header) {
 | 
				
			||||||
 | 
					        av_log(filter_ctx, AV_LOG_ERROR, "failed to create side data with %d bounding boxes\n", nb_bboxes);
 | 
				
			||||||
 | 
					        return -1;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    av_strlcpy(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for (int i = 0; i < proposal_count; ++i) {
 | 
				
			||||||
 | 
					        int av_unused image_id = (int)detections[i * detect_size + 0];
 | 
				
			||||||
 | 
					        int label_id = (int)detections[i * detect_size + 1];
 | 
				
			||||||
 | 
					        float conf   =      detections[i * detect_size + 2];
 | 
				
			||||||
 | 
					        float x0     =      detections[i * detect_size + 3];
 | 
				
			||||||
 | 
					        float y0     =      detections[i * detect_size + 4];
 | 
				
			||||||
 | 
					        float x1     =      detections[i * detect_size + 5];
 | 
				
			||||||
 | 
					        float y1     =      detections[i * detect_size + 6];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        bbox = av_get_detection_bbox(header, i);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (conf < conf_threshold) {
 | 
				
			||||||
 | 
					            continue;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        bbox->x = (int)(x0 * frame->width);
 | 
				
			||||||
 | 
					        bbox->w = (int)(x1 * frame->width) - bbox->x;
 | 
				
			||||||
 | 
					        bbox->y = (int)(y0 * frame->height);
 | 
				
			||||||
 | 
					        bbox->h = (int)(y1 * frame->height) - bbox->y;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        bbox->detect_confidence = av_make_q((int)(conf * 10000), 10000);
 | 
				
			||||||
 | 
					        bbox->classify_count = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (ctx->labels && label_id < ctx->label_count) {
 | 
				
			||||||
 | 
					            av_strlcpy(bbox->detect_label, ctx->labels[label_id], sizeof(bbox->detect_label));
 | 
				
			||||||
 | 
					        } else {
 | 
				
			||||||
 | 
					            snprintf(bbox->detect_label, sizeof(bbox->detect_label), "%d", label_id);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        nb_bboxes--;
 | 
				
			||||||
 | 
					        if (nb_bboxes == 0) {
 | 
				
			||||||
 | 
					            break;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static void free_detect_labels(DnnDetectContext *ctx)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    for (int i = 0; i < ctx->label_count; i++) {
 | 
				
			||||||
 | 
					        av_freep(&ctx->labels[i]);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    ctx->label_count = 0;
 | 
				
			||||||
 | 
					    av_freep(&ctx->labels);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int read_detect_label_file(AVFilterContext *context)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    int line_len;
 | 
				
			||||||
 | 
					    FILE *file;
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = context->priv;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    file = av_fopen_utf8(ctx->labels_filename, "r");
 | 
				
			||||||
 | 
					    if (!file){
 | 
				
			||||||
 | 
					        av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
 | 
				
			||||||
 | 
					        return AVERROR(EINVAL);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    while (!feof(file)) {
 | 
				
			||||||
 | 
					        char *label;
 | 
				
			||||||
 | 
					        char buf[256];
 | 
				
			||||||
 | 
					        if (!fgets(buf, 256, file)) {
 | 
				
			||||||
 | 
					            break;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        line_len = strlen(buf);
 | 
				
			||||||
 | 
					        while (line_len) {
 | 
				
			||||||
 | 
					            int i = line_len - 1;
 | 
				
			||||||
 | 
					            if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
 | 
				
			||||||
 | 
					                buf[i] = '\0';
 | 
				
			||||||
 | 
					                line_len--;
 | 
				
			||||||
 | 
					            } else {
 | 
				
			||||||
 | 
					                break;
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (line_len == 0)  // empty line
 | 
				
			||||||
 | 
					            continue;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
 | 
				
			||||||
 | 
					            av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
 | 
				
			||||||
 | 
					            fclose(file);
 | 
				
			||||||
 | 
					            return AVERROR(EINVAL);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        label = av_strdup(buf);
 | 
				
			||||||
 | 
					        if (!label) {
 | 
				
			||||||
 | 
					            av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
 | 
				
			||||||
 | 
					            fclose(file);
 | 
				
			||||||
 | 
					            return AVERROR(ENOMEM);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
 | 
				
			||||||
 | 
					            av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
 | 
				
			||||||
 | 
					            fclose(file);
 | 
				
			||||||
 | 
					            av_freep(&label);
 | 
				
			||||||
 | 
					            return AVERROR(ENOMEM);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    fclose(file);
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static av_cold int dnn_detect_init(AVFilterContext *context)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = context->priv;
 | 
				
			||||||
 | 
					    int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_DETECT, context);
 | 
				
			||||||
 | 
					    if (ret < 0)
 | 
				
			||||||
 | 
					        return ret;
 | 
				
			||||||
 | 
					    ff_dnn_set_detect_post_proc(&ctx->dnnctx, dnn_detect_post_proc);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (ctx->labels_filename) {
 | 
				
			||||||
 | 
					        return read_detect_label_file(context);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_query_formats(AVFilterContext *context)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    static const enum AVPixelFormat pix_fmts[] = {
 | 
				
			||||||
 | 
					        AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
 | 
				
			||||||
 | 
					        AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
 | 
				
			||||||
 | 
					        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
 | 
				
			||||||
 | 
					        AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
 | 
				
			||||||
 | 
					        AV_PIX_FMT_NV12,
 | 
				
			||||||
 | 
					        AV_PIX_FMT_NONE
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
 | 
				
			||||||
 | 
					    return ff_set_common_formats(context, fmts_list);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_filter_frame(AVFilterLink *inlink, AVFrame *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    AVFilterContext *context  = inlink->dst;
 | 
				
			||||||
 | 
					    AVFilterLink *outlink = context->outputs[0];
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = context->priv;
 | 
				
			||||||
 | 
					    DNNReturnType dnn_result;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dnn_result = ff_dnn_execute_model(&ctx->dnnctx, in, in);
 | 
				
			||||||
 | 
					    if (dnn_result != DNN_SUCCESS){
 | 
				
			||||||
 | 
					        av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
 | 
				
			||||||
 | 
					        av_frame_free(&in);
 | 
				
			||||||
 | 
					        return AVERROR(EIO);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return ff_filter_frame(outlink, in);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_activate_sync(AVFilterContext *filter_ctx)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    AVFilterLink *inlink = filter_ctx->inputs[0];
 | 
				
			||||||
 | 
					    AVFilterLink *outlink = filter_ctx->outputs[0];
 | 
				
			||||||
 | 
					    AVFrame *in = NULL;
 | 
				
			||||||
 | 
					    int64_t pts;
 | 
				
			||||||
 | 
					    int ret, status;
 | 
				
			||||||
 | 
					    int got_frame = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    do {
 | 
				
			||||||
 | 
					        // drain all input frames
 | 
				
			||||||
 | 
					        ret = ff_inlink_consume_frame(inlink, &in);
 | 
				
			||||||
 | 
					        if (ret < 0)
 | 
				
			||||||
 | 
					            return ret;
 | 
				
			||||||
 | 
					        if (ret > 0) {
 | 
				
			||||||
 | 
					            ret = dnn_detect_filter_frame(inlink, in);
 | 
				
			||||||
 | 
					            if (ret < 0)
 | 
				
			||||||
 | 
					                return ret;
 | 
				
			||||||
 | 
					            got_frame = 1;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    } while (ret > 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // if frame got, schedule to next filter
 | 
				
			||||||
 | 
					    if (got_frame)
 | 
				
			||||||
 | 
					        return 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
 | 
				
			||||||
 | 
					        if (status == AVERROR_EOF) {
 | 
				
			||||||
 | 
					            ff_outlink_set_status(outlink, status, pts);
 | 
				
			||||||
 | 
					            return ret;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FF_FILTER_FORWARD_WANTED(outlink, inlink);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return FFERROR_NOT_READY;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = outlink->src->priv;
 | 
				
			||||||
 | 
					    int ret;
 | 
				
			||||||
 | 
					    DNNAsyncStatusType async_state;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ret = ff_dnn_flush(&ctx->dnnctx);
 | 
				
			||||||
 | 
					    if (ret != DNN_SUCCESS) {
 | 
				
			||||||
 | 
					        return -1;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    do {
 | 
				
			||||||
 | 
					        AVFrame *in_frame = NULL;
 | 
				
			||||||
 | 
					        AVFrame *out_frame = NULL;
 | 
				
			||||||
 | 
					        async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
 | 
				
			||||||
 | 
					        if (out_frame) {
 | 
				
			||||||
 | 
					            av_assert0(in_frame == out_frame);
 | 
				
			||||||
 | 
					            ret = ff_filter_frame(outlink, out_frame);
 | 
				
			||||||
 | 
					            if (ret < 0)
 | 
				
			||||||
 | 
					                return ret;
 | 
				
			||||||
 | 
					            if (out_pts)
 | 
				
			||||||
 | 
					                *out_pts = out_frame->pts + pts;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        av_usleep(5000);
 | 
				
			||||||
 | 
					    } while (async_state >= DAST_NOT_READY);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_activate_async(AVFilterContext *filter_ctx)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    AVFilterLink *inlink = filter_ctx->inputs[0];
 | 
				
			||||||
 | 
					    AVFilterLink *outlink = filter_ctx->outputs[0];
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = filter_ctx->priv;
 | 
				
			||||||
 | 
					    AVFrame *in = NULL;
 | 
				
			||||||
 | 
					    int64_t pts;
 | 
				
			||||||
 | 
					    int ret, status;
 | 
				
			||||||
 | 
					    int got_frame = 0;
 | 
				
			||||||
 | 
					    int async_state;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    do {
 | 
				
			||||||
 | 
					        // drain all input frames
 | 
				
			||||||
 | 
					        ret = ff_inlink_consume_frame(inlink, &in);
 | 
				
			||||||
 | 
					        if (ret < 0)
 | 
				
			||||||
 | 
					            return ret;
 | 
				
			||||||
 | 
					        if (ret > 0) {
 | 
				
			||||||
 | 
					            if (ff_dnn_execute_model_async(&ctx->dnnctx, in, in) != DNN_SUCCESS) {
 | 
				
			||||||
 | 
					                return AVERROR(EIO);
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    } while (ret > 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // drain all processed frames
 | 
				
			||||||
 | 
					    do {
 | 
				
			||||||
 | 
					        AVFrame *in_frame = NULL;
 | 
				
			||||||
 | 
					        AVFrame *out_frame = NULL;
 | 
				
			||||||
 | 
					        async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
 | 
				
			||||||
 | 
					        if (out_frame) {
 | 
				
			||||||
 | 
					            av_assert0(in_frame == out_frame);
 | 
				
			||||||
 | 
					            ret = ff_filter_frame(outlink, out_frame);
 | 
				
			||||||
 | 
					            if (ret < 0)
 | 
				
			||||||
 | 
					                return ret;
 | 
				
			||||||
 | 
					            got_frame = 1;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    } while (async_state == DAST_SUCCESS);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // if frame got, schedule to next filter
 | 
				
			||||||
 | 
					    if (got_frame)
 | 
				
			||||||
 | 
					        return 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
 | 
				
			||||||
 | 
					        if (status == AVERROR_EOF) {
 | 
				
			||||||
 | 
					            int64_t out_pts = pts;
 | 
				
			||||||
 | 
					            ret = dnn_detect_flush_frame(outlink, pts, &out_pts);
 | 
				
			||||||
 | 
					            ff_outlink_set_status(outlink, status, out_pts);
 | 
				
			||||||
 | 
					            return ret;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    FF_FILTER_FORWARD_WANTED(outlink, inlink);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return 0;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static int dnn_detect_activate(AVFilterContext *filter_ctx)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = filter_ctx->priv;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (ctx->dnnctx.async)
 | 
				
			||||||
 | 
					        return dnn_detect_activate_async(filter_ctx);
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					        return dnn_detect_activate_sync(filter_ctx);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static av_cold void dnn_detect_uninit(AVFilterContext *context)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    DnnDetectContext *ctx = context->priv;
 | 
				
			||||||
 | 
					    ff_dnn_uninit(&ctx->dnnctx);
 | 
				
			||||||
 | 
					    free_detect_labels(ctx);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static const AVFilterPad dnn_detect_inputs[] = {
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					        .name         = "default",
 | 
				
			||||||
 | 
					        .type         = AVMEDIA_TYPE_VIDEO,
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    { NULL }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static const AVFilterPad dnn_detect_outputs[] = {
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					        .name = "default",
 | 
				
			||||||
 | 
					        .type = AVMEDIA_TYPE_VIDEO,
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    { NULL }
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					AVFilter ff_vf_dnn_detect = {
 | 
				
			||||||
 | 
					    .name          = "dnn_detect",
 | 
				
			||||||
 | 
					    .description   = NULL_IF_CONFIG_SMALL("Apply DNN detect filter to the input."),
 | 
				
			||||||
 | 
					    .priv_size     = sizeof(DnnDetectContext),
 | 
				
			||||||
 | 
					    .init          = dnn_detect_init,
 | 
				
			||||||
 | 
					    .uninit        = dnn_detect_uninit,
 | 
				
			||||||
 | 
					    .query_formats = dnn_detect_query_formats,
 | 
				
			||||||
 | 
					    .inputs        = dnn_detect_inputs,
 | 
				
			||||||
 | 
					    .outputs       = dnn_detect_outputs,
 | 
				
			||||||
 | 
					    .priv_class    = &dnn_detect_class,
 | 
				
			||||||
 | 
					    .activate      = dnn_detect_activate,
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user