flac-lpc patch by (Justin Ruggles jruggle earthlink net)
tabs removed and regression.sh fixed (it was missing in the patch) by me Originally committed as revision 5572 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
		
							parent
							
								
									78f67b7ad3
								
							
						
					
					
						commit
						a403fc0324
					
				@ -1983,6 +1983,58 @@ typedef struct AVCodecContext {
 | 
			
		||||
     * - decoding: unused
 | 
			
		||||
     */
 | 
			
		||||
    int b_sensitivity;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused
 | 
			
		||||
     */
 | 
			
		||||
    int compression_level;
 | 
			
		||||
#define FF_COMPRESSION_DEFAULT -1
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * sets whether to use LPC mode - used by FLAC encoder
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int use_lpc;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * LPC coefficient precision - used by FLAC encoder
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int lpc_coeff_precision;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int min_prediction_order;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int max_prediction_order;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * search method for selecting prediction order
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int prediction_order_method;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int min_partition_order;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * - encoding: set by user.
 | 
			
		||||
     * - decoding: unused.
 | 
			
		||||
     */
 | 
			
		||||
    int max_partition_order;
 | 
			
		||||
} AVCodecContext;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 | 
			
		||||
@ -37,11 +37,38 @@
 | 
			
		||||
#define FLAC_CHMODE_RIGHT_SIDE      9
 | 
			
		||||
#define FLAC_CHMODE_MID_SIDE       10
 | 
			
		||||
 | 
			
		||||
#define ORDER_METHOD_EST     0
 | 
			
		||||
#define ORDER_METHOD_2LEVEL  1
 | 
			
		||||
#define ORDER_METHOD_4LEVEL  2
 | 
			
		||||
#define ORDER_METHOD_8LEVEL  3
 | 
			
		||||
#define ORDER_METHOD_SEARCH  4
 | 
			
		||||
 | 
			
		||||
#define FLAC_STREAMINFO_SIZE  34
 | 
			
		||||
 | 
			
		||||
#define MIN_LPC_ORDER       1
 | 
			
		||||
#define MAX_LPC_ORDER      32
 | 
			
		||||
#define MAX_FIXED_ORDER     4
 | 
			
		||||
#define MAX_PARTITION_ORDER 8
 | 
			
		||||
#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | 
			
		||||
#define MAX_LPC_PRECISION  15
 | 
			
		||||
#define MAX_LPC_SHIFT      15
 | 
			
		||||
#define MAX_RICE_PARAM     14
 | 
			
		||||
 | 
			
		||||
typedef struct CompressionOptions {
 | 
			
		||||
    int compression_level;
 | 
			
		||||
    int block_time_ms;
 | 
			
		||||
    int use_lpc;
 | 
			
		||||
    int lpc_coeff_precision;
 | 
			
		||||
    int min_prediction_order;
 | 
			
		||||
    int max_prediction_order;
 | 
			
		||||
    int prediction_order_method;
 | 
			
		||||
    int min_partition_order;
 | 
			
		||||
    int max_partition_order;
 | 
			
		||||
} CompressionOptions;
 | 
			
		||||
 | 
			
		||||
typedef struct RiceContext {
 | 
			
		||||
    int porder;
 | 
			
		||||
    int params[256];
 | 
			
		||||
    int params[MAX_PARTITIONS];
 | 
			
		||||
} RiceContext;
 | 
			
		||||
 | 
			
		||||
typedef struct FlacSubframe {
 | 
			
		||||
@ -49,6 +76,8 @@ typedef struct FlacSubframe {
 | 
			
		||||
    int type_code;
 | 
			
		||||
    int obits;
 | 
			
		||||
    int order;
 | 
			
		||||
    int32_t coefs[MAX_LPC_ORDER];
 | 
			
		||||
    int shift;
 | 
			
		||||
    RiceContext rc;
 | 
			
		||||
    int32_t samples[FLAC_MAX_BLOCKSIZE];
 | 
			
		||||
    int32_t residual[FLAC_MAX_BLOCKSIZE];
 | 
			
		||||
@ -72,6 +101,7 @@ typedef struct FlacEncodeContext {
 | 
			
		||||
    int max_framesize;
 | 
			
		||||
    uint32_t frame_count;
 | 
			
		||||
    FlacFrame frame;
 | 
			
		||||
    CompressionOptions options;
 | 
			
		||||
    AVCodecContext *avctx;
 | 
			
		||||
} FlacEncodeContext;
 | 
			
		||||
 | 
			
		||||
@ -112,13 +142,11 @@ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | 
			
		||||
    /* MD5 signature = 0 */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define BLOCK_TIME_MS 27
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Sets blocksize based on samplerate
 | 
			
		||||
 * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
 | 
			
		||||
 */
 | 
			
		||||
static int select_blocksize(int samplerate)
 | 
			
		||||
static int select_blocksize(int samplerate, int block_time_ms)
 | 
			
		||||
{
 | 
			
		||||
    int i;
 | 
			
		||||
    int target;
 | 
			
		||||
@ -126,7 +154,7 @@ static int select_blocksize(int samplerate)
 | 
			
		||||
 | 
			
		||||
    assert(samplerate > 0);
 | 
			
		||||
    blocksize = flac_blocksizes[1];
 | 
			
		||||
    target = (samplerate * BLOCK_TIME_MS) / 1000;
 | 
			
		||||
    target = (samplerate * block_time_ms) / 1000;
 | 
			
		||||
    for(i=0; i<16; i++) {
 | 
			
		||||
        if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
 | 
			
		||||
            blocksize = flac_blocksizes[i];
 | 
			
		||||
@ -183,8 +211,198 @@ static int flac_encode_init(AVCodecContext *avctx)
 | 
			
		||||
        s->samplerate = freq;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    s->blocksize = select_blocksize(s->samplerate);
 | 
			
		||||
    /* set compression option defaults based on avctx->compression_level */
 | 
			
		||||
    if(avctx->compression_level < 0) {
 | 
			
		||||
        s->options.compression_level = 5;
 | 
			
		||||
    } else {
 | 
			
		||||
        s->options.compression_level = avctx->compression_level;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
 | 
			
		||||
 | 
			
		||||
    if(s->options.compression_level == 0) {
 | 
			
		||||
        s->options.block_time_ms = 27;
 | 
			
		||||
        s->options.use_lpc = 0;
 | 
			
		||||
        s->options.min_prediction_order = 2;
 | 
			
		||||
        s->options.max_prediction_order = 3;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 2;
 | 
			
		||||
        s->options.max_partition_order = 2;
 | 
			
		||||
    } else if(s->options.compression_level == 1) {
 | 
			
		||||
        s->options.block_time_ms = 27;
 | 
			
		||||
        s->options.use_lpc = 0;
 | 
			
		||||
        s->options.min_prediction_order = 0;
 | 
			
		||||
        s->options.max_prediction_order = 4;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 2;
 | 
			
		||||
        s->options.max_partition_order = 2;
 | 
			
		||||
    } else if(s->options.compression_level == 2) {
 | 
			
		||||
        s->options.block_time_ms = 27;
 | 
			
		||||
        s->options.use_lpc = 0;
 | 
			
		||||
        s->options.min_prediction_order = 0;
 | 
			
		||||
        s->options.max_prediction_order = 4;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 0;
 | 
			
		||||
        s->options.max_partition_order = 3;
 | 
			
		||||
    } else if(s->options.compression_level == 3) {
 | 
			
		||||
        s->options.block_time_ms = 105;
 | 
			
		||||
        s->options.use_lpc = 1;
 | 
			
		||||
        s->options.min_prediction_order = 1;
 | 
			
		||||
        s->options.max_prediction_order = 6;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 0;
 | 
			
		||||
        s->options.max_partition_order = 3;
 | 
			
		||||
    } else if(s->options.compression_level == 4) {
 | 
			
		||||
        s->options.block_time_ms = 105;
 | 
			
		||||
        s->options.use_lpc = 1;
 | 
			
		||||
        s->options.min_prediction_order = 1;
 | 
			
		||||
        s->options.max_prediction_order = 8;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 0;
 | 
			
		||||
        s->options.max_partition_order = 3;
 | 
			
		||||
    } else if(s->options.compression_level == 5) {
 | 
			
		||||
        s->options.block_time_ms = 105;
 | 
			
		||||
        s->options.use_lpc = 1;
 | 
			
		||||
        s->options.min_prediction_order = 1;
 | 
			
		||||
        s->options.max_prediction_order = 8;
 | 
			
		||||
        s->options.prediction_order_method = ORDER_METHOD_EST;
 | 
			
		||||
        s->options.min_partition_order = 0;
 | 
			
		||||
        s->options.max_partition_order = 8;
 | 
			
		||||
    } else {
 | 
			
		||||
        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | 
			
		||||
               s->options.compression_level);
 | 
			
		||||
        return -1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* set compression option overrides from AVCodecContext */
 | 
			
		||||
    if(avctx->use_lpc >= 0) {
 | 
			
		||||
        s->options.use_lpc = !!avctx->use_lpc;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
 | 
			
		||||
           s->options.use_lpc? "yes" : "no");
 | 
			
		||||
 | 
			
		||||
    if(avctx->min_prediction_order >= 0) {
 | 
			
		||||
        if(s->options.use_lpc) {
 | 
			
		||||
            if(avctx->min_prediction_order < MIN_LPC_ORDER ||
 | 
			
		||||
                    avctx->min_prediction_order > MAX_LPC_ORDER) {
 | 
			
		||||
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
			
		||||
                       avctx->min_prediction_order);
 | 
			
		||||
                return -1;
 | 
			
		||||
            }
 | 
			
		||||
        } else {
 | 
			
		||||
            if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
 | 
			
		||||
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
			
		||||
                       avctx->min_prediction_order);
 | 
			
		||||
                return -1;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        s->options.min_prediction_order = avctx->min_prediction_order;
 | 
			
		||||
    }
 | 
			
		||||
    if(avctx->max_prediction_order >= 0) {
 | 
			
		||||
        if(s->options.use_lpc) {
 | 
			
		||||
            if(avctx->max_prediction_order < MIN_LPC_ORDER ||
 | 
			
		||||
                    avctx->max_prediction_order > MAX_LPC_ORDER) {
 | 
			
		||||
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
			
		||||
                       avctx->max_prediction_order);
 | 
			
		||||
                return -1;
 | 
			
		||||
            }
 | 
			
		||||
        } else {
 | 
			
		||||
            if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
 | 
			
		||||
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
			
		||||
                       avctx->max_prediction_order);
 | 
			
		||||
                return -1;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        s->options.max_prediction_order = avctx->max_prediction_order;
 | 
			
		||||
    }
 | 
			
		||||
    if(s->options.max_prediction_order < s->options.min_prediction_order) {
 | 
			
		||||
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | 
			
		||||
               s->options.min_prediction_order, s->options.max_prediction_order);
 | 
			
		||||
        return -1;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | 
			
		||||
           s->options.min_prediction_order, s->options.max_prediction_order);
 | 
			
		||||
 | 
			
		||||
    if(avctx->prediction_order_method >= 0) {
 | 
			
		||||
        if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) {
 | 
			
		||||
            av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
 | 
			
		||||
                   avctx->prediction_order_method);
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
        s->options.prediction_order_method = avctx->prediction_order_method;
 | 
			
		||||
    }
 | 
			
		||||
    switch(avctx->prediction_order_method) {
 | 
			
		||||
        case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
			
		||||
                                         "estimate"); break;
 | 
			
		||||
        case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
			
		||||
                                         "2-level"); break;
 | 
			
		||||
        case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
			
		||||
                                         "4-level"); break;
 | 
			
		||||
        case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
			
		||||
                                         "8-level"); break;
 | 
			
		||||
        case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | 
			
		||||
                                         "full search"); break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(avctx->min_partition_order >= 0) {
 | 
			
		||||
        if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
 | 
			
		||||
            av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
 | 
			
		||||
                   avctx->min_partition_order);
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
        s->options.min_partition_order = avctx->min_partition_order;
 | 
			
		||||
    }
 | 
			
		||||
    if(avctx->max_partition_order >= 0) {
 | 
			
		||||
        if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
 | 
			
		||||
            av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
 | 
			
		||||
                   avctx->max_partition_order);
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
        s->options.max_partition_order = avctx->max_partition_order;
 | 
			
		||||
    }
 | 
			
		||||
    if(s->options.max_partition_order < s->options.min_partition_order) {
 | 
			
		||||
        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | 
			
		||||
               s->options.min_partition_order, s->options.max_partition_order);
 | 
			
		||||
        return -1;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | 
			
		||||
           s->options.min_partition_order, s->options.max_partition_order);
 | 
			
		||||
 | 
			
		||||
    if(avctx->frame_size > 0) {
 | 
			
		||||
        if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | 
			
		||||
                avctx->frame_size > FLAC_MIN_BLOCKSIZE) {
 | 
			
		||||
            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | 
			
		||||
                   avctx->frame_size);
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
        s->blocksize = avctx->frame_size;
 | 
			
		||||
    } else {
 | 
			
		||||
        s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
 | 
			
		||||
        avctx->frame_size = s->blocksize;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
 | 
			
		||||
 | 
			
		||||
    /* set LPC precision */
 | 
			
		||||
    if(avctx->lpc_coeff_precision > 0) {
 | 
			
		||||
        if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
 | 
			
		||||
            av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
 | 
			
		||||
                   avctx->lpc_coeff_precision);
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
        s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
 | 
			
		||||
    } else {
 | 
			
		||||
        /* select LPC precision based on block size */
 | 
			
		||||
        if(     s->blocksize <=   192) s->options.lpc_coeff_precision =  7;
 | 
			
		||||
        else if(s->blocksize <=   384) s->options.lpc_coeff_precision =  8;
 | 
			
		||||
        else if(s->blocksize <=   576) s->options.lpc_coeff_precision =  9;
 | 
			
		||||
        else if(s->blocksize <=  1152) s->options.lpc_coeff_precision = 10;
 | 
			
		||||
        else if(s->blocksize <=  2304) s->options.lpc_coeff_precision = 11;
 | 
			
		||||
        else if(s->blocksize <=  4608) s->options.lpc_coeff_precision = 12;
 | 
			
		||||
        else if(s->blocksize <=  8192) s->options.lpc_coeff_precision = 13;
 | 
			
		||||
        else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
 | 
			
		||||
        else                           s->options.lpc_coeff_precision = 15;
 | 
			
		||||
    }
 | 
			
		||||
    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | 
			
		||||
           s->options.lpc_coeff_precision);
 | 
			
		||||
 | 
			
		||||
    /* set maximum encoded frame size in verbatim mode */
 | 
			
		||||
    if(s->channels == 2) {
 | 
			
		||||
@ -259,14 +477,13 @@ static void copy_samples(FlacEncodeContext *s, int16_t *samples)
 | 
			
		||||
static int find_optimal_param(uint32_t sum, int n)
 | 
			
		||||
{
 | 
			
		||||
    int k, k_opt;
 | 
			
		||||
    uint32_t nbits, nbits_opt;
 | 
			
		||||
    uint32_t nbits[MAX_RICE_PARAM+1];
 | 
			
		||||
 | 
			
		||||
    k_opt = 0;
 | 
			
		||||
    nbits_opt = rice_encode_count(sum, n, 0);
 | 
			
		||||
    for(k=1; k<=14; k++) {
 | 
			
		||||
        nbits = rice_encode_count(sum, n, k);
 | 
			
		||||
        if(nbits < nbits_opt) {
 | 
			
		||||
            nbits_opt = nbits;
 | 
			
		||||
    nbits[0] = UINT32_MAX;
 | 
			
		||||
    for(k=0; k<=MAX_RICE_PARAM; k++) {
 | 
			
		||||
        nbits[k] = rice_encode_count(sum, n, k);
 | 
			
		||||
        if(nbits[k] < nbits[k_opt]) {
 | 
			
		||||
            k_opt = k;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
@ -297,8 +514,8 @@ static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | 
			
		||||
    return all_bits;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
 | 
			
		||||
                      uint32_t sums[][256])
 | 
			
		||||
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
 | 
			
		||||
                      uint32_t sums[][MAX_PARTITIONS])
 | 
			
		||||
{
 | 
			
		||||
    int i, j;
 | 
			
		||||
    int parts;
 | 
			
		||||
@ -316,7 +533,7 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
 | 
			
		||||
        res_end+= n >> pmax;
 | 
			
		||||
    }
 | 
			
		||||
    /* sums for lower levels */
 | 
			
		||||
    for(i=pmax-1; i>=0; i--) {
 | 
			
		||||
    for(i=pmax-1; i>=pmin; i--) {
 | 
			
		||||
        parts = (1 << i);
 | 
			
		||||
        for(j=0; j<parts; j++) {
 | 
			
		||||
            sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
 | 
			
		||||
@ -324,59 +541,262 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint32_t calc_rice_params(RiceContext *rc, int pmax, int32_t *data,
 | 
			
		||||
                                 int n, int pred_order)
 | 
			
		||||
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
 | 
			
		||||
                                 int32_t *data, int n, int pred_order)
 | 
			
		||||
{
 | 
			
		||||
    int i;
 | 
			
		||||
    uint32_t bits, opt_bits;
 | 
			
		||||
    uint32_t bits[MAX_PARTITION_ORDER+1];
 | 
			
		||||
    int opt_porder;
 | 
			
		||||
    RiceContext opt_rc;
 | 
			
		||||
    RiceContext tmp_rc;
 | 
			
		||||
    uint32_t *udata;
 | 
			
		||||
    uint32_t sums[9][256];
 | 
			
		||||
    uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
 | 
			
		||||
 | 
			
		||||
    assert(pmax >= 0 && pmax <= 8);
 | 
			
		||||
    assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | 
			
		||||
    assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | 
			
		||||
    assert(pmin <= pmax);
 | 
			
		||||
 | 
			
		||||
    udata = av_malloc(n * sizeof(uint32_t));
 | 
			
		||||
    for(i=0; i<n; i++) {
 | 
			
		||||
        udata[i] = (2*data[i]) ^ (data[i]>>31);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    calc_sums(pmax, udata, n, pred_order, sums);
 | 
			
		||||
    calc_sums(pmin, pmax, udata, n, pred_order, sums);
 | 
			
		||||
 | 
			
		||||
    opt_porder = 0;
 | 
			
		||||
    opt_bits = UINT32_MAX;
 | 
			
		||||
    for(i=0; i<=pmax; i++) {
 | 
			
		||||
        bits = calc_optimal_rice_params(rc, i, sums[i], n, pred_order);
 | 
			
		||||
        if(bits < opt_bits) {
 | 
			
		||||
            opt_bits = bits;
 | 
			
		||||
    opt_porder = pmin;
 | 
			
		||||
    bits[pmin] = UINT32_MAX;
 | 
			
		||||
    for(i=pmin; i<=pmax; i++) {
 | 
			
		||||
        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
 | 
			
		||||
        if(bits[i] <= bits[opt_porder]) {
 | 
			
		||||
            opt_porder = i;
 | 
			
		||||
            memcpy(&opt_rc, rc, sizeof(RiceContext));
 | 
			
		||||
            memcpy(rc, &tmp_rc, sizeof(RiceContext));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    if(opt_porder != pmax) {
 | 
			
		||||
        memcpy(rc, &opt_rc, sizeof(RiceContext));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    av_freep(&udata);
 | 
			
		||||
    return opt_bits;
 | 
			
		||||
    return bits[opt_porder];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmax, int32_t *data,
 | 
			
		||||
                                       int n, int pred_order, int bps)
 | 
			
		||||
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
 | 
			
		||||
                                       int32_t *data, int n, int pred_order,
 | 
			
		||||
                                       int bps)
 | 
			
		||||
{
 | 
			
		||||
    uint32_t bits;
 | 
			
		||||
    bits = pred_order*bps + 6;
 | 
			
		||||
    bits += calc_rice_params(rc, pmax, data, n, pred_order);
 | 
			
		||||
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | 
			
		||||
    return bits;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
 | 
			
		||||
                                     int32_t *data, int n, int pred_order,
 | 
			
		||||
                                     int bps, int precision)
 | 
			
		||||
{
 | 
			
		||||
    uint32_t bits;
 | 
			
		||||
    bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
 | 
			
		||||
    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | 
			
		||||
    return bits;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Apply Welch window function to audio block
 | 
			
		||||
 */
 | 
			
		||||
static void apply_welch_window(const int32_t *data, int len, double *w_data)
 | 
			
		||||
{
 | 
			
		||||
    int i, n2;
 | 
			
		||||
    double w;
 | 
			
		||||
    double c;
 | 
			
		||||
 | 
			
		||||
    n2 = (len >> 1);
 | 
			
		||||
    c = 2.0 / (len - 1.0);
 | 
			
		||||
    for(i=0; i<n2; i++) {
 | 
			
		||||
        w = c - i - 1.0;
 | 
			
		||||
        w = 1.0 - (w * w);
 | 
			
		||||
        w_data[i] = data[i] * w;
 | 
			
		||||
        w_data[len-1-i] = data[len-1-i] * w;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Calculates autocorrelation data from audio samples
 | 
			
		||||
 * A Welch window function is applied before calculation.
 | 
			
		||||
 */
 | 
			
		||||
static void compute_autocorr(const int32_t *data, int len, int lag,
 | 
			
		||||
                             double *autoc)
 | 
			
		||||
{
 | 
			
		||||
    int i;
 | 
			
		||||
    double *data1;
 | 
			
		||||
    int lag_ptr, ptr;
 | 
			
		||||
 | 
			
		||||
    data1 = av_malloc(len * sizeof(double));
 | 
			
		||||
    apply_welch_window(data, len, data1);
 | 
			
		||||
 | 
			
		||||
    for(i=0; i<lag; i++) autoc[i] = 1.0;
 | 
			
		||||
 | 
			
		||||
    ptr = 0;
 | 
			
		||||
    while(ptr <= lag) {
 | 
			
		||||
        lag_ptr = 0;
 | 
			
		||||
        while(lag_ptr <= ptr) {
 | 
			
		||||
            autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
 | 
			
		||||
            lag_ptr++;
 | 
			
		||||
        }
 | 
			
		||||
        ptr++;
 | 
			
		||||
    }
 | 
			
		||||
    while(ptr < len) {
 | 
			
		||||
        lag_ptr = ptr - lag;
 | 
			
		||||
        while(lag_ptr <= ptr) {
 | 
			
		||||
            autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
 | 
			
		||||
            lag_ptr++;
 | 
			
		||||
        }
 | 
			
		||||
        ptr++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    av_freep(&data1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Levinson-Durbin recursion.
 | 
			
		||||
 * Produces LPC coefficients from autocorrelation data.
 | 
			
		||||
 */
 | 
			
		||||
static void compute_lpc_coefs(const double *autoc, int max_order,
 | 
			
		||||
                              double lpc[][MAX_LPC_ORDER], double *ref)
 | 
			
		||||
{
 | 
			
		||||
   int i, j, i2;
 | 
			
		||||
   double r, err, tmp;
 | 
			
		||||
   double lpc_tmp[MAX_LPC_ORDER];
 | 
			
		||||
 | 
			
		||||
   for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
 | 
			
		||||
   err = autoc[0];
 | 
			
		||||
 | 
			
		||||
   for(i=0; i<max_order; i++) {
 | 
			
		||||
      r = -autoc[i+1];
 | 
			
		||||
      for(j=0; j<i; j++) {
 | 
			
		||||
          r -= lpc_tmp[j] * autoc[i-j];
 | 
			
		||||
      }
 | 
			
		||||
      r /= err;
 | 
			
		||||
      ref[i] = fabs(r);
 | 
			
		||||
 | 
			
		||||
      err *= 1.0 - (r * r);
 | 
			
		||||
 | 
			
		||||
      i2 = (i >> 1);
 | 
			
		||||
      lpc_tmp[i] = r;
 | 
			
		||||
      for(j=0; j<i2; j++) {
 | 
			
		||||
         tmp = lpc_tmp[j];
 | 
			
		||||
         lpc_tmp[j] += r * lpc_tmp[i-1-j];
 | 
			
		||||
         lpc_tmp[i-1-j] += r * tmp;
 | 
			
		||||
      }
 | 
			
		||||
      if(i & 1) {
 | 
			
		||||
          lpc_tmp[j] += lpc_tmp[j] * r;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(j=0; j<=i; j++) {
 | 
			
		||||
          lpc[i][j] = -lpc_tmp[j];
 | 
			
		||||
      }
 | 
			
		||||
   }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Quantize LPC coefficients
 | 
			
		||||
 */
 | 
			
		||||
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
 | 
			
		||||
                               int32_t *lpc_out, int *shift)
 | 
			
		||||
{
 | 
			
		||||
    int i;
 | 
			
		||||
    double d, cmax;
 | 
			
		||||
    int32_t qmax;
 | 
			
		||||
    int sh;
 | 
			
		||||
 | 
			
		||||
    /* define maximum levels */
 | 
			
		||||
    qmax = (1 << (precision - 1)) - 1;
 | 
			
		||||
 | 
			
		||||
    /* find maximum coefficient value */
 | 
			
		||||
    cmax = 0.0;
 | 
			
		||||
    for(i=0; i<order; i++) {
 | 
			
		||||
        d = lpc_in[i];
 | 
			
		||||
        if(d < 0) d = -d;
 | 
			
		||||
        if(d > cmax)
 | 
			
		||||
            cmax = d;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* if maximum value quantizes to zero, return all zeros */
 | 
			
		||||
    if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
 | 
			
		||||
        *shift = 0;
 | 
			
		||||
        for(i=0; i<order; i++) {
 | 
			
		||||
            lpc_out[i] = 0;
 | 
			
		||||
        }
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* calculate level shift which scales max coeff to available bits */
 | 
			
		||||
    sh = MAX_LPC_SHIFT;
 | 
			
		||||
    while((cmax * (1 << sh) > qmax) && (sh > 0)) {
 | 
			
		||||
        sh--;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* since negative shift values are unsupported in decoder, scale down
 | 
			
		||||
       coefficients instead */
 | 
			
		||||
    if(sh == 0 && cmax > qmax) {
 | 
			
		||||
        double scale = ((double)qmax) / cmax;
 | 
			
		||||
        for(i=0; i<order; i++) {
 | 
			
		||||
            lpc_in[i] *= scale;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* output quantized coefficients and level shift */
 | 
			
		||||
    for(i=0; i<order; i++) {
 | 
			
		||||
        lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh));
 | 
			
		||||
    }
 | 
			
		||||
    *shift = sh;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int estimate_best_order(double *ref, int max_order)
 | 
			
		||||
{
 | 
			
		||||
    int i, est;
 | 
			
		||||
 | 
			
		||||
    est = 1;
 | 
			
		||||
    for(i=max_order-1; i>=0; i--) {
 | 
			
		||||
        if(ref[i] > 0.10) {
 | 
			
		||||
            est = i+1;
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return est;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Calculate LPC coefficients for multiple orders
 | 
			
		||||
 */
 | 
			
		||||
static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
 | 
			
		||||
                          int precision, int32_t coefs[][MAX_LPC_ORDER],
 | 
			
		||||
                          int *shift)
 | 
			
		||||
{
 | 
			
		||||
    double autoc[MAX_LPC_ORDER+1];
 | 
			
		||||
    double ref[MAX_LPC_ORDER];
 | 
			
		||||
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
			
		||||
    int i;
 | 
			
		||||
    int opt_order;
 | 
			
		||||
 | 
			
		||||
    assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
 | 
			
		||||
 | 
			
		||||
    compute_autocorr(samples, blocksize, max_order+1, autoc);
 | 
			
		||||
 | 
			
		||||
    compute_lpc_coefs(autoc, max_order, lpc, ref);
 | 
			
		||||
 | 
			
		||||
    opt_order = estimate_best_order(ref, max_order);
 | 
			
		||||
 | 
			
		||||
    i = opt_order-1;
 | 
			
		||||
    quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
 | 
			
		||||
 | 
			
		||||
    return opt_order;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
 | 
			
		||||
{
 | 
			
		||||
    assert(n > 0);
 | 
			
		||||
    memcpy(res, smp, n * sizeof(int32_t));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
 | 
			
		||||
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | 
			
		||||
                                  int order)
 | 
			
		||||
{
 | 
			
		||||
    int i;
 | 
			
		||||
 | 
			
		||||
@ -402,6 +822,24 @@ static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
 | 
			
		||||
                                int order, const int32_t *coefs, int shift)
 | 
			
		||||
{
 | 
			
		||||
    int i, j;
 | 
			
		||||
    int32_t pred;
 | 
			
		||||
 | 
			
		||||
    for(i=0; i<order; i++) {
 | 
			
		||||
        res[i] = smp[i];
 | 
			
		||||
    }
 | 
			
		||||
    for(i=order; i<n; i++) {
 | 
			
		||||
        pred = 0;
 | 
			
		||||
        for(j=0; j<order; j++) {
 | 
			
		||||
            pred += coefs[j] * smp[i-j-1];
 | 
			
		||||
        }
 | 
			
		||||
        res[i] = smp[i] - (pred >> shift);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int get_max_p_order(int max_porder, int n, int order)
 | 
			
		||||
{
 | 
			
		||||
    int porder, max_parts;
 | 
			
		||||
@ -419,10 +857,13 @@ static int get_max_p_order(int max_porder, int n, int order)
 | 
			
		||||
 | 
			
		||||
static int encode_residual(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
{
 | 
			
		||||
    int i, opt_order, porder, max_porder, n;
 | 
			
		||||
    int i, n;
 | 
			
		||||
    int min_order, max_order, opt_order, precision;
 | 
			
		||||
    int porder, min_porder, max_porder;
 | 
			
		||||
    FlacFrame *frame;
 | 
			
		||||
    FlacSubframe *sub;
 | 
			
		||||
    uint32_t bits[5];
 | 
			
		||||
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
			
		||||
    int shift[MAX_LPC_ORDER];
 | 
			
		||||
    int32_t *res, *smp;
 | 
			
		||||
 | 
			
		||||
    frame = &ctx->frame;
 | 
			
		||||
@ -448,15 +889,23 @@ static int encode_residual(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
        return sub->obits * n;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    max_porder = 3;
 | 
			
		||||
    min_order = ctx->options.min_prediction_order;
 | 
			
		||||
    max_order = ctx->options.max_prediction_order;
 | 
			
		||||
    min_porder = ctx->options.min_partition_order;
 | 
			
		||||
    max_porder = ctx->options.max_partition_order;
 | 
			
		||||
    precision = ctx->options.lpc_coeff_precision;
 | 
			
		||||
 | 
			
		||||
    /* FIXED */
 | 
			
		||||
    if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
 | 
			
		||||
        uint32_t bits[MAX_FIXED_ORDER+1];
 | 
			
		||||
        if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
 | 
			
		||||
        opt_order = 0;
 | 
			
		||||
        bits[0] = UINT32_MAX;
 | 
			
		||||
    for(i=0; i<=4; i++) {
 | 
			
		||||
        for(i=min_order; i<=max_order; i++) {
 | 
			
		||||
            encode_residual_fixed(res, smp, n, i);
 | 
			
		||||
            porder = get_max_p_order(max_porder, n, i);
 | 
			
		||||
        bits[i] = calc_rice_params_fixed(&sub->rc, porder, res, n, i, sub->obits);
 | 
			
		||||
            bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, porder, res,
 | 
			
		||||
                                             n, i, sub->obits);
 | 
			
		||||
            if(bits[i] < bits[opt_order]) {
 | 
			
		||||
                opt_order = i;
 | 
			
		||||
            }
 | 
			
		||||
@ -464,12 +913,27 @@ static int encode_residual(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
        sub->order = opt_order;
 | 
			
		||||
        sub->type = FLAC_SUBFRAME_FIXED;
 | 
			
		||||
        sub->type_code = sub->type | sub->order;
 | 
			
		||||
    if(sub->order != 4) {
 | 
			
		||||
        if(sub->order != max_order) {
 | 
			
		||||
            encode_residual_fixed(res, smp, n, sub->order);
 | 
			
		||||
            porder = get_max_p_order(max_porder, n, sub->order);
 | 
			
		||||
        calc_rice_params_fixed(&sub->rc, porder, res, n, sub->order, sub->obits);
 | 
			
		||||
            return calc_rice_params_fixed(&sub->rc, min_porder, porder, res, n,
 | 
			
		||||
                                          sub->order, sub->obits);
 | 
			
		||||
        }
 | 
			
		||||
        return bits[sub->order];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* LPC */
 | 
			
		||||
    sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
 | 
			
		||||
    sub->type = FLAC_SUBFRAME_LPC;
 | 
			
		||||
    sub->type_code = sub->type | (sub->order-1);
 | 
			
		||||
    sub->shift = shift[sub->order-1];
 | 
			
		||||
    for(i=0; i<sub->order; i++) {
 | 
			
		||||
        sub->coefs[i] = coefs[sub->order-1][i];
 | 
			
		||||
    }
 | 
			
		||||
    porder = get_max_p_order(max_porder, n, sub->order);
 | 
			
		||||
    encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
 | 
			
		||||
    return calc_rice_params_lpc(&sub->rc, 0, porder, res, n, sub->order,
 | 
			
		||||
                                sub->obits, precision);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
@ -509,7 +973,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
			
		||||
    uint64_t score[4];
 | 
			
		||||
    int k;
 | 
			
		||||
 | 
			
		||||
    /* calculate sum of squares for each channel */
 | 
			
		||||
    /* calculate sum of 2nd order residual for each channel */
 | 
			
		||||
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | 
			
		||||
    for(i=2; i<n; i++) {
 | 
			
		||||
        lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
 | 
			
		||||
@ -519,6 +983,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
			
		||||
        sum[0] += ABS(lt);
 | 
			
		||||
        sum[1] += ABS(rt);
 | 
			
		||||
    }
 | 
			
		||||
    /* estimate bit counts */
 | 
			
		||||
    for(i=0; i<4; i++) {
 | 
			
		||||
        k = find_optimal_param(2*sum[i], n);
 | 
			
		||||
        sum[i] = rice_encode_count(2*sum[i], n, k);
 | 
			
		||||
@ -731,6 +1196,32 @@ static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
    output_residual(ctx, ch);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
 | 
			
		||||
{
 | 
			
		||||
    int i, cbits;
 | 
			
		||||
    FlacFrame *frame;
 | 
			
		||||
    FlacSubframe *sub;
 | 
			
		||||
 | 
			
		||||
    frame = &ctx->frame;
 | 
			
		||||
    sub = &frame->subframes[ch];
 | 
			
		||||
 | 
			
		||||
    /* warm-up samples */
 | 
			
		||||
    for(i=0; i<sub->order; i++) {
 | 
			
		||||
        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* LPC coefficients */
 | 
			
		||||
    cbits = ctx->options.lpc_coeff_precision;
 | 
			
		||||
    put_bits(&ctx->pb, 4, cbits-1);
 | 
			
		||||
    put_sbits(&ctx->pb, 5, sub->shift);
 | 
			
		||||
    for(i=0; i<sub->order; i++) {
 | 
			
		||||
        put_sbits(&ctx->pb, cbits, sub->coefs[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* residual */
 | 
			
		||||
    output_residual(ctx, ch);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void output_subframes(FlacEncodeContext *s)
 | 
			
		||||
{
 | 
			
		||||
    FlacFrame *frame;
 | 
			
		||||
@ -754,6 +1245,8 @@ static void output_subframes(FlacEncodeContext *s)
 | 
			
		||||
            output_subframe_verbatim(s, ch);
 | 
			
		||||
        } else if(sub->type == FLAC_SUBFRAME_FIXED) {
 | 
			
		||||
            output_subframe_fixed(s, ch);
 | 
			
		||||
        } else if(sub->type == FLAC_SUBFRAME_LPC) {
 | 
			
		||||
            output_subframe_lpc(s, ch);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -744,6 +744,14 @@ static AVOption options[]={
 | 
			
		||||
{"mv0_threshold", NULL, OFFSET(mv0_threshold), FF_OPT_TYPE_INT, 256, 0, INT_MAX, V|E},
 | 
			
		||||
{"ivlc", "intra vlc table", 0, FF_OPT_TYPE_CONST, CODEC_FLAG2_INTRA_VLC, INT_MIN, INT_MAX, V|E, "flags2"},
 | 
			
		||||
{"b_sensitivity", NULL, OFFSET(b_sensitivity), FF_OPT_TYPE_INT, 40, 1, INT_MAX, V|E},
 | 
			
		||||
{"compression_level", NULL, OFFSET(compression_level), FF_OPT_TYPE_INT, FF_COMPRESSION_DEFAULT, INT_MIN, INT_MAX, V|A|E},
 | 
			
		||||
{"use_lpc", NULL, OFFSET(use_lpc), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{"lpc_coeff_precision", NULL, OFFSET(lpc_coeff_precision), FF_OPT_TYPE_INT, DEFAULT, 0, INT_MAX, A|E},
 | 
			
		||||
{"min_prediction_order", NULL, OFFSET(min_prediction_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{"max_prediction_order", NULL, OFFSET(max_prediction_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{"prediction_order_method", NULL, OFFSET(prediction_order_method), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{"min_partition_order", NULL, OFFSET(min_partition_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{"max_partition_order", NULL, OFFSET(max_partition_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
 | 
			
		||||
{NULL},
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@ -800,6 +808,13 @@ void avcodec_get_context_defaults(AVCodecContext *s){
 | 
			
		||||
    s->sample_fmt= SAMPLE_FMT_S16; // FIXME: set to NONE
 | 
			
		||||
    s->mv0_threshold= 256;
 | 
			
		||||
    s->b_sensitivity= 40;
 | 
			
		||||
    s->compression_level = FF_COMPRESSION_DEFAULT;
 | 
			
		||||
    s->use_lpc = -1;
 | 
			
		||||
    s->min_prediction_order = -1;
 | 
			
		||||
    s->max_prediction_order = -1;
 | 
			
		||||
    s->prediction_order_method = -1;
 | 
			
		||||
    s->min_partition_order = -1;
 | 
			
		||||
    s->max_partition_order = -1;
 | 
			
		||||
 | 
			
		||||
    s->intra_quant_bias= FF_DEFAULT_QUANT_BIAS;
 | 
			
		||||
    s->inter_quant_bias= FF_DEFAULT_QUANT_BIAS;
 | 
			
		||||
 | 
			
		||||
@ -176,7 +176,7 @@ stddev:1050.18 PSNR:35.89 bytes:1054720
 | 
			
		||||
264236 ./data/a-adpcm_yam.wav
 | 
			
		||||
e92cec8c07913ffb91ad2b11f79cdc00 *./data/out.wav
 | 
			
		||||
stddev:18312.68 PSNR:11.06 bytes:1056768
 | 
			
		||||
9ab5f311b70bc1fa8591b891db50b386 *./data/a-flac.flac
 | 
			
		||||
353384 ./data/a-flac.flac
 | 
			
		||||
c3382f03ce2efb5d475240d288a33898 *./data/a-flac.flac
 | 
			
		||||
353368 ./data/a-flac.flac
 | 
			
		||||
c4228df189aad9567a037727d0e763e4 *./data/out.wav
 | 
			
		||||
stddev: 33.31 PSNR:65.87 bytes:1040384
 | 
			
		||||
 | 
			
		||||
@ -599,7 +599,7 @@ fi
 | 
			
		||||
if [ -n "$do_flac" ] ; then
 | 
			
		||||
# encoding
 | 
			
		||||
file=${outfile}flac.flac
 | 
			
		||||
do_ffmpeg $file -y -ab 128 -ac 2 -ar 44100 -f s16le -i $pcm_src -acodec flac $file
 | 
			
		||||
do_ffmpeg $file -y -ab 128 -ac 2 -ar 44100 -f s16le -i $pcm_src -acodec flac -compression_level 2 $file
 | 
			
		||||
 | 
			
		||||
# decoding
 | 
			
		||||
do_ffmpeg $pcm_dst -y -i $file -f wav $pcm_dst
 | 
			
		||||
 | 
			
		||||
@ -176,7 +176,7 @@ stddev:1050.18 PSNR:35.89 bytes:1054720
 | 
			
		||||
264236 ./data/a-adpcm_yam.wav
 | 
			
		||||
e92cec8c07913ffb91ad2b11f79cdc00 *./data/out.wav
 | 
			
		||||
stddev:18312.68 PSNR:11.06 bytes:1056768
 | 
			
		||||
9ab5f311b70bc1fa8591b891db50b386 *./data/a-flac.flac
 | 
			
		||||
353384 ./data/a-flac.flac
 | 
			
		||||
c3382f03ce2efb5d475240d288a33898 *./data/a-flac.flac
 | 
			
		||||
353368 ./data/a-flac.flac
 | 
			
		||||
c4228df189aad9567a037727d0e763e4 *./data/out.wav
 | 
			
		||||
stddev: 33.31 PSNR:65.87 bytes:1040384
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user