dnn_backend_native_layer_conv2d.c: refine code.
Move thread area allocate out of thread function into main thread. Signed-off-by: Xu Jun <xujunzz@sjtu.edu.cn>
This commit is contained in:
		
							parent
							
								
									8e67ae2cb4
								
							
						
					
					
						commit
						7d3cd9f956
					
				@ -33,12 +33,11 @@ typedef struct thread_common_param{
 | 
			
		||||
    const void *parameters;
 | 
			
		||||
    NativeContext *ctx;
 | 
			
		||||
    float *output_data;
 | 
			
		||||
    int thread_num;
 | 
			
		||||
} thread_common_param;
 | 
			
		||||
 | 
			
		||||
typedef struct thread_param{
 | 
			
		||||
    thread_common_param *thread_common_param;
 | 
			
		||||
    int thread_index;
 | 
			
		||||
    int thread_start, thread_end;
 | 
			
		||||
} thread_param;
 | 
			
		||||
 | 
			
		||||
int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
 | 
			
		||||
@ -125,16 +124,12 @@ static void * dnn_execute_layer_conv2d_thread(void *threadarg)
 | 
			
		||||
    int filter_size = conv_params->kernel_size * filter_linesize;
 | 
			
		||||
    int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
 | 
			
		||||
 | 
			
		||||
    int thread_stride = (height - pad_size * 2) / thread_common_param->thread_num;
 | 
			
		||||
    int thread_start = thread_stride * thread_param->thread_index + pad_size;
 | 
			
		||||
    int thread_end = (thread_param->thread_index == thread_common_param->thread_num - 1) ? (height - pad_size) : (thread_start + thread_stride);
 | 
			
		||||
 | 
			
		||||
    float *output = thread_common_param->output_data;
 | 
			
		||||
    output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_start - pad_size);
 | 
			
		||||
    output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
 | 
			
		||||
 | 
			
		||||
    av_assert0(channel == conv_params->input_num);
 | 
			
		||||
 | 
			
		||||
    for (int y = thread_start; y < thread_end; ++y) {
 | 
			
		||||
    for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
 | 
			
		||||
        for (int x = pad_size; x < width - pad_size; ++x) {
 | 
			
		||||
            for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
 | 
			
		||||
                if (conv_params->has_bias)
 | 
			
		||||
@ -193,16 +188,19 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
 | 
			
		||||
        ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
 | 
			
		||||
#if HAVE_PTHREAD_CANCEL
 | 
			
		||||
    pthread_t *thread_id = av_malloc(thread_num * sizeof(pthread_t));
 | 
			
		||||
    int thread_stride;
 | 
			
		||||
#endif
 | 
			
		||||
    thread_param **thread_param = av_malloc(thread_num * sizeof(*thread_param));
 | 
			
		||||
    thread_common_param thread_common_param;
 | 
			
		||||
    const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(parameters);
 | 
			
		||||
    int height = operands[input_operand_indexes[0]].dims[1];
 | 
			
		||||
    int width = operands[input_operand_indexes[0]].dims[2];
 | 
			
		||||
    int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
 | 
			
		||||
    DnnOperand *output_operand = &operands[output_operand_index];
 | 
			
		||||
 | 
			
		||||
    output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
 | 
			
		||||
    output_operand->dims[1] = operands[input_operand_indexes[0]].dims[1] - pad_size * 2;
 | 
			
		||||
    output_operand->dims[2] = operands[input_operand_indexes[0]].dims[2] - pad_size * 2;
 | 
			
		||||
    output_operand->dims[1] = height - pad_size * 2;
 | 
			
		||||
    output_operand->dims[2] = width - pad_size * 2;
 | 
			
		||||
    output_operand->dims[3] = conv_params->output_num;
 | 
			
		||||
    output_operand->data_type = operands[input_operand_indexes[0]].data_type;
 | 
			
		||||
    output_operand->length = calculate_operand_data_length(output_operand);
 | 
			
		||||
@ -223,13 +221,13 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
 | 
			
		||||
    thread_common_param.ctx = ctx;
 | 
			
		||||
 | 
			
		||||
#if HAVE_PTHREAD_CANCEL
 | 
			
		||||
    thread_common_param.thread_num = thread_num;
 | 
			
		||||
 | 
			
		||||
    thread_stride = (height - pad_size * 2) / thread_num;
 | 
			
		||||
    //create threads
 | 
			
		||||
    for (int i = 0; i < thread_num; i++){
 | 
			
		||||
        thread_param[i] = av_malloc(sizeof(**thread_param));
 | 
			
		||||
        thread_param[i]->thread_common_param = &thread_common_param;
 | 
			
		||||
        thread_param[i]->thread_index = i;
 | 
			
		||||
        thread_param[i]->thread_start = thread_stride * i + pad_size;
 | 
			
		||||
        thread_param[i]->thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i]->thread_start + thread_stride);
 | 
			
		||||
        pthread_create(&thread_id[i], NULL, dnn_execute_layer_conv2d_thread, (void *)thread_param[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@ -245,10 +243,10 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
 | 
			
		||||
        av_free(thread_param[i]);
 | 
			
		||||
    }
 | 
			
		||||
#else
 | 
			
		||||
    thread_common_param.thread_num = 1;
 | 
			
		||||
    thread_param[0] = av_malloc(sizeof(thread_param));
 | 
			
		||||
    thread_param[0] = av_malloc(sizeof(**thread_param));
 | 
			
		||||
    thread_param[0]->thread_common_param = &thread_common_param;
 | 
			
		||||
    thread_param[0]->thread_index = 0;
 | 
			
		||||
    thread_param[0]->thread_start = 0;
 | 
			
		||||
    thread_param[0]->thread_end = height - pad_size;
 | 
			
		||||
    dnn_execute_layer_conv2d_thread((void *)thread_param[0]);
 | 
			
		||||
    av_free(thread_param[0]);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user