Adds ESPCN super resolution filter merged with SRCNN filter.
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
		
							parent
							
								
									d24c9e55f6
								
							
						
					
					
						commit
						575b718990
					
				
							
								
								
									
										8
									
								
								configure
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										8
									
								
								configure
									
									
									
									
										vendored
									
									
								
							| @ -260,7 +260,7 @@ External library support: | ||||
|   --enable-libsrt          enable Haivision SRT protocol via libsrt [no] | ||||
|   --enable-libssh          enable SFTP protocol via libssh [no] | ||||
|   --enable-libtensorflow   enable TensorFlow as a DNN module backend | ||||
|                            for DNN based filters like srcnn [no] | ||||
|                            for DNN based filters like sr [no] | ||||
|   --enable-libtesseract    enable Tesseract, needed for ocr filter [no] | ||||
|   --enable-libtheora       enable Theora encoding via libtheora [no] | ||||
|   --enable-libtls          enable LibreSSL (via libtls), needed for https support | ||||
| @ -3402,8 +3402,8 @@ spectrumsynth_filter_deps="avcodec" | ||||
| spectrumsynth_filter_select="fft" | ||||
| spp_filter_deps="gpl avcodec" | ||||
| spp_filter_select="fft idctdsp fdctdsp me_cmp pixblockdsp" | ||||
| srcnn_filter_deps="avformat" | ||||
| srcnn_filter_select="dnn" | ||||
| sr_filter_deps="avformat swscale" | ||||
| sr_filter_select="dnn" | ||||
| stereo3d_filter_deps="gpl" | ||||
| subtitles_filter_deps="avformat avcodec libass" | ||||
| super2xsai_filter_deps="gpl" | ||||
| @ -6823,7 +6823,7 @@ enabled signature_filter    && prepend avfilter_deps "avcodec avformat" | ||||
| enabled smartblur_filter    && prepend avfilter_deps "swscale" | ||||
| enabled spectrumsynth_filter && prepend avfilter_deps "avcodec" | ||||
| enabled spp_filter          && prepend avfilter_deps "avcodec" | ||||
| enabled srcnn_filter        && prepend avfilter_deps "avformat" | ||||
| enabled sr_filter           && prepend avfilter_deps "avformat" | ||||
| enabled subtitles_filter    && prepend avfilter_deps "avformat avcodec" | ||||
| enabled uspp_filter         && prepend avfilter_deps "avcodec" | ||||
| enabled zoompan_filter      && prepend avfilter_deps "swscale" | ||||
|  | ||||
| @ -340,7 +340,7 @@ OBJS-$(CONFIG_SMARTBLUR_FILTER)              += vf_smartblur.o | ||||
| OBJS-$(CONFIG_SOBEL_FILTER)                  += vf_convolution.o | ||||
| OBJS-$(CONFIG_SPLIT_FILTER)                  += split.o | ||||
| OBJS-$(CONFIG_SPP_FILTER)                    += vf_spp.o | ||||
| OBJS-$(CONFIG_SRCNN_FILTER)                  += vf_srcnn.o | ||||
| OBJS-$(CONFIG_SR_FILTER)                     += vf_sr.o | ||||
| OBJS-$(CONFIG_SSIM_FILTER)                   += vf_ssim.o framesync.o | ||||
| OBJS-$(CONFIG_STEREO3D_FILTER)               += vf_stereo3d.o | ||||
| OBJS-$(CONFIG_STREAMSELECT_FILTER)           += f_streamselect.o framesync.o | ||||
|  | ||||
| @ -328,7 +328,7 @@ extern AVFilter ff_vf_smartblur; | ||||
| extern AVFilter ff_vf_sobel; | ||||
| extern AVFilter ff_vf_split; | ||||
| extern AVFilter ff_vf_spp; | ||||
| extern AVFilter ff_vf_srcnn; | ||||
| extern AVFilter ff_vf_sr; | ||||
| extern AVFilter ff_vf_ssim; | ||||
| extern AVFilter ff_vf_stereo3d; | ||||
| extern AVFilter ff_vf_streamselect; | ||||
|  | ||||
| @ -25,9 +25,12 @@ | ||||
| 
 | ||||
| #include "dnn_backend_native.h" | ||||
| #include "dnn_srcnn.h" | ||||
| #include "dnn_espcn.h" | ||||
| #include "libavformat/avio.h" | ||||
| 
 | ||||
| typedef enum {INPUT, CONV} LayerType; | ||||
| typedef enum {INPUT, CONV, DEPTH_TO_SPACE} LayerType; | ||||
| 
 | ||||
| typedef enum {RELU, TANH, SIGMOID} ActivationFunc; | ||||
| 
 | ||||
| typedef struct Layer{ | ||||
|     LayerType type; | ||||
| @ -37,6 +40,7 @@ typedef struct Layer{ | ||||
| 
 | ||||
| typedef struct ConvolutionalParams{ | ||||
|     int32_t input_num, output_num, kernel_size; | ||||
|     ActivationFunc activation; | ||||
|     float* kernel; | ||||
|     float* biases; | ||||
| } ConvolutionalParams; | ||||
| @ -45,17 +49,22 @@ typedef struct InputParams{ | ||||
|     int height, width, channels; | ||||
| } InputParams; | ||||
| 
 | ||||
| typedef struct DepthToSpaceParams{ | ||||
|     int block_size; | ||||
| } DepthToSpaceParams; | ||||
| 
 | ||||
| // Represents simple feed-forward convolutional network.
 | ||||
| typedef struct ConvolutionalNetwork{ | ||||
|     Layer* layers; | ||||
|     int32_t layers_num; | ||||
| } ConvolutionalNetwork; | ||||
| 
 | ||||
| static DNNReturnType set_input_output_native(void* model, const DNNData* input, const DNNData* output) | ||||
| static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output) | ||||
| { | ||||
|     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model; | ||||
|     InputParams* input_params; | ||||
|     ConvolutionalParams* conv_params; | ||||
|     DepthToSpaceParams* depth_to_space_params; | ||||
|     int cur_width, cur_height, cur_channels; | ||||
|     int32_t layer; | ||||
| 
 | ||||
| @ -63,11 +72,17 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     else{ | ||||
|         network->layers[0].output = input->data; | ||||
|         input_params = (InputParams*)network->layers[0].params; | ||||
|         input_params->width = cur_width = input->width; | ||||
|         input_params->height = cur_height = input->height; | ||||
|         input_params->channels = cur_channels = input->channels; | ||||
|         if (input->data){ | ||||
|             av_freep(&input->data); | ||||
|         } | ||||
|         network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | ||||
|         if (!network->layers[0].output){ | ||||
|             return DNN_ERROR; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     for (layer = 1; layer < network->layers_num; ++layer){ | ||||
| @ -78,32 +93,40 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | ||||
|                 return DNN_ERROR; | ||||
|             } | ||||
|             cur_channels = conv_params->output_num; | ||||
|             if (layer < network->layers_num - 1){ | ||||
|                 if (!network->layers[layer].output){ | ||||
|                     av_freep(&network->layers[layer].output); | ||||
|                 } | ||||
|                 network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | ||||
|                 if (!network->layers[layer].output){ | ||||
|                     return DNN_ERROR; | ||||
|                 } | ||||
|             } | ||||
|             else{ | ||||
|                 network->layers[layer].output = output->data; | ||||
|                 if (output->width != cur_width || output->height != cur_height || output->channels != cur_channels){ | ||||
|                     return DNN_ERROR; | ||||
|                 } | ||||
|             break; | ||||
|         case DEPTH_TO_SPACE: | ||||
|             depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | ||||
|             if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){ | ||||
|                 return DNN_ERROR; | ||||
|             } | ||||
|             cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size); | ||||
|             cur_height *= depth_to_space_params->block_size; | ||||
|             cur_width *= depth_to_space_params->block_size; | ||||
|             break; | ||||
|         default: | ||||
|             return DNN_ERROR; | ||||
|         } | ||||
|         if (network->layers[layer].output){ | ||||
|             av_freep(&network->layers[layer].output); | ||||
|         } | ||||
|         network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | ||||
|         if (!network->layers[layer].output){ | ||||
|             return DNN_ERROR; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     output->data = network->layers[network->layers_num - 1].output; | ||||
|     output->height = cur_height; | ||||
|     output->width = cur_width; | ||||
|     output->channels = cur_channels; | ||||
| 
 | ||||
|     return DNN_SUCCESS; | ||||
| } | ||||
| 
 | ||||
| // Loads model and its parameters that are stored in a binary file with following structure:
 | ||||
| // layers_num,conv_input_num,conv_output_num,conv_kernel_size,conv_kernel,conv_biases,conv_input_num...
 | ||||
| // layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
 | ||||
| // For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
 | ||||
| // For DEPTH_TO_SPACE layer: block_size
 | ||||
| DNNModel* ff_dnn_load_model_native(const char* model_filename) | ||||
| { | ||||
|     DNNModel* model = NULL; | ||||
| @ -111,7 +134,9 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | ||||
|     AVIOContext* model_file_context; | ||||
|     int file_size, dnn_size, kernel_size, i; | ||||
|     int32_t layer; | ||||
|     LayerType layer_type; | ||||
|     ConvolutionalParams* conv_params; | ||||
|     DepthToSpaceParams* depth_to_space_params; | ||||
| 
 | ||||
|     model = av_malloc(sizeof(DNNModel)); | ||||
|     if (!model){ | ||||
| @ -156,39 +181,62 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | ||||
|     } | ||||
| 
 | ||||
|     for (layer = 1; layer < network->layers_num; ++layer){ | ||||
|         conv_params = av_malloc(sizeof(ConvolutionalParams)); | ||||
|         if (!conv_params){ | ||||
|         layer_type = (int32_t)avio_rl32(model_file_context); | ||||
|         dnn_size += 4; | ||||
|         switch (layer_type){ | ||||
|         case CONV: | ||||
|             conv_params = av_malloc(sizeof(ConvolutionalParams)); | ||||
|             if (!conv_params){ | ||||
|                 avio_closep(&model_file_context); | ||||
|                 ff_dnn_free_model_native(&model); | ||||
|                 return NULL; | ||||
|             } | ||||
|             conv_params->activation = (int32_t)avio_rl32(model_file_context); | ||||
|             conv_params->input_num = (int32_t)avio_rl32(model_file_context); | ||||
|             conv_params->output_num = (int32_t)avio_rl32(model_file_context); | ||||
|             conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); | ||||
|             kernel_size = conv_params->input_num * conv_params->output_num * | ||||
|                           conv_params->kernel_size * conv_params->kernel_size; | ||||
|             dnn_size += 16 + (kernel_size + conv_params->output_num << 2); | ||||
|             if (dnn_size > file_size || conv_params->input_num <= 0 || | ||||
|                 conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ | ||||
|                 avio_closep(&model_file_context); | ||||
|                 ff_dnn_free_model_native(&model); | ||||
|                 return NULL; | ||||
|             } | ||||
|             conv_params->kernel = av_malloc(kernel_size * sizeof(float)); | ||||
|             conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); | ||||
|             if (!conv_params->kernel || !conv_params->biases){ | ||||
|                 avio_closep(&model_file_context); | ||||
|                 ff_dnn_free_model_native(&model); | ||||
|                 return NULL; | ||||
|             } | ||||
|             for (i = 0; i < kernel_size; ++i){ | ||||
|                 conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); | ||||
|             } | ||||
|             for (i = 0; i < conv_params->output_num; ++i){ | ||||
|                 conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); | ||||
|             } | ||||
|             network->layers[layer].type = CONV; | ||||
|             network->layers[layer].params = conv_params; | ||||
|             break; | ||||
|         case DEPTH_TO_SPACE: | ||||
|             depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | ||||
|             if (!depth_to_space_params){ | ||||
|                 avio_closep(&model_file_context); | ||||
|                 ff_dnn_free_model_native(&model); | ||||
|                 return NULL; | ||||
|             } | ||||
|             depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context); | ||||
|             dnn_size += 4; | ||||
|             network->layers[layer].type = DEPTH_TO_SPACE; | ||||
|             network->layers[layer].params = depth_to_space_params; | ||||
|             break; | ||||
|         default: | ||||
|             avio_closep(&model_file_context); | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         conv_params->input_num = (int32_t)avio_rl32(model_file_context); | ||||
|         conv_params->output_num = (int32_t)avio_rl32(model_file_context); | ||||
|         conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); | ||||
|         kernel_size = conv_params->input_num * conv_params->output_num * | ||||
|                       conv_params->kernel_size * conv_params->kernel_size; | ||||
|         dnn_size += 12 + (kernel_size + conv_params->output_num << 2); | ||||
|         if (dnn_size > file_size || conv_params->input_num <= 0 || | ||||
|             conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ | ||||
|             avio_closep(&model_file_context); | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         conv_params->kernel = av_malloc(kernel_size * sizeof(float)); | ||||
|         conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); | ||||
|         if (!conv_params->kernel || !conv_params->biases){ | ||||
|             avio_closep(&model_file_context); | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         for (i = 0; i < kernel_size; ++i){ | ||||
|             conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); | ||||
|         } | ||||
|         for (i = 0; i < conv_params->output_num; ++i){ | ||||
|             conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); | ||||
|         } | ||||
|         network->layers[layer].type = CONV; | ||||
|         network->layers[layer].params = conv_params; | ||||
|     } | ||||
| 
 | ||||
|     avio_closep(&model_file_context); | ||||
| @ -203,7 +251,8 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | ||||
|     return model; | ||||
| } | ||||
| 
 | ||||
| static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, int32_t input_num, int32_t output_num, int32_t size) | ||||
| static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation, | ||||
|                              int32_t input_num, int32_t output_num, int32_t size) | ||||
| { | ||||
|     ConvolutionalParams* conv_params; | ||||
|     int kernel_size; | ||||
| @ -212,6 +261,7 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia | ||||
|     if (!conv_params){ | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     conv_params->activation = activation; | ||||
|     conv_params->input_num = input_num; | ||||
|     conv_params->output_num = output_num; | ||||
|     conv_params->kernel_size = size; | ||||
| @ -236,6 +286,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | ||||
| { | ||||
|     DNNModel* model = NULL; | ||||
|     ConvolutionalNetwork* network = NULL; | ||||
|     DepthToSpaceParams* depth_to_space_params; | ||||
|     int32_t layer; | ||||
| 
 | ||||
|     model = av_malloc(sizeof(DNNModel)); | ||||
| @ -253,45 +304,68 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | ||||
|     switch (model_type){ | ||||
|     case DNN_SRCNN: | ||||
|         network->layers_num = 4; | ||||
| 
 | ||||
|         network->layers = av_malloc(network->layers_num * sizeof(Layer)); | ||||
|         if (!network->layers){ | ||||
|             av_freep(&network); | ||||
|             av_freep(&model); | ||||
|             return NULL; | ||||
|         } | ||||
| 
 | ||||
|         for (layer = 0; layer < network->layers_num; ++layer){ | ||||
|             network->layers[layer].output = NULL; | ||||
|             network->layers[layer].params = NULL; | ||||
|         } | ||||
|         network->layers[0].type = INPUT; | ||||
|         network->layers[0].params = av_malloc(sizeof(InputParams)); | ||||
|         if (!network->layers[0].params){ | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
| 
 | ||||
|         if (set_up_conv_layer(network->layers + 1, conv1_kernel, conv1_biases, 1, 64, 9) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 2, conv2_kernel, conv2_biases, 64, 32, 1) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 3, conv3_kernel, conv3_biases, 32, 1, 5) != DNN_SUCCESS){ | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
| 
 | ||||
|         model->set_input_output = &set_input_output_native; | ||||
| 
 | ||||
|         return model; | ||||
|         break; | ||||
|     case DNN_ESPCN: | ||||
|         network->layers_num = 5; | ||||
|         break; | ||||
|     default: | ||||
|         av_freep(&network); | ||||
|         av_freep(&model); | ||||
|         return NULL; | ||||
|     } | ||||
| 
 | ||||
|     network->layers = av_malloc(network->layers_num * sizeof(Layer)); | ||||
|     if (!network->layers){ | ||||
|         av_freep(&network); | ||||
|         av_freep(&model); | ||||
|         return NULL; | ||||
|     } | ||||
| 
 | ||||
|     for (layer = 0; layer < network->layers_num; ++layer){ | ||||
|         network->layers[layer].output = NULL; | ||||
|         network->layers[layer].params = NULL; | ||||
|     } | ||||
|     network->layers[0].type = INPUT; | ||||
|     network->layers[0].params = av_malloc(sizeof(InputParams)); | ||||
|     if (!network->layers[0].params){ | ||||
|         ff_dnn_free_model_native(&model); | ||||
|         return NULL; | ||||
|     } | ||||
| 
 | ||||
|     switch (model_type){ | ||||
|     case DNN_SRCNN: | ||||
|         if (set_up_conv_layer(network->layers + 1, srcnn_conv1_kernel, srcnn_conv1_biases, RELU, 1, 64, 9) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 2, srcnn_conv2_kernel, srcnn_conv2_biases, RELU, 64, 32, 1) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 3, srcnn_conv3_kernel, srcnn_conv3_biases, RELU, 32, 1, 5) != DNN_SUCCESS){ | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         break; | ||||
|     case DNN_ESPCN: | ||||
|         if (set_up_conv_layer(network->layers + 1, espcn_conv1_kernel, espcn_conv1_biases, TANH, 1, 64, 5) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 2, espcn_conv2_kernel, espcn_conv2_biases, TANH, 64, 32, 3) != DNN_SUCCESS || | ||||
|             set_up_conv_layer(network->layers + 3, espcn_conv3_kernel, espcn_conv3_biases, SIGMOID, 32, 4, 3) != DNN_SUCCESS){ | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         network->layers[4].type = DEPTH_TO_SPACE; | ||||
|         depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | ||||
|         if (!depth_to_space_params){ | ||||
|             ff_dnn_free_model_native(&model); | ||||
|             return NULL; | ||||
|         } | ||||
|         depth_to_space_params->block_size = 2; | ||||
|         network->layers[4].params = depth_to_space_params; | ||||
|     } | ||||
| 
 | ||||
|     model->set_input_output = &set_input_output_native; | ||||
| 
 | ||||
|     return model; | ||||
| } | ||||
| 
 | ||||
| #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) | ||||
| 
 | ||||
| static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int32_t width, int32_t height) | ||||
| static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height) | ||||
| { | ||||
|     int y, x, n_filter, ch, kernel_y, kernel_x; | ||||
|     int radius = conv_params->kernel_size >> 1; | ||||
| @ -313,19 +387,53 @@ static void convolve(const float* input, float* output, const ConvolutionalParam | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 output[n_filter] = FFMAX(output[n_filter], 0.0); | ||||
|                 switch (conv_params->activation){ | ||||
|                 case RELU: | ||||
|                     output[n_filter] = FFMAX(output[n_filter], 0.0); | ||||
|                     break; | ||||
|                 case TANH: | ||||
|                     output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; | ||||
|                     break; | ||||
|                 case SIGMOID: | ||||
|                     output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); | ||||
|                 } | ||||
|             } | ||||
|             output += conv_params->output_num; | ||||
|         } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels) | ||||
| { | ||||
|     int y, x, by, bx, ch; | ||||
|     int new_channels = channels / (block_size * block_size); | ||||
|     int output_linesize = width * channels; | ||||
|     int by_linesize = output_linesize / block_size; | ||||
|     int x_linesize = new_channels * block_size; | ||||
| 
 | ||||
|     for (y = 0; y < height; ++y){ | ||||
|         for (x = 0; x < width; ++x){ | ||||
|             for (by = 0; by < block_size; ++by){ | ||||
|                 for (bx = 0; bx < block_size; ++bx){ | ||||
|                     for (ch = 0; ch < new_channels; ++ch){ | ||||
|                         output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; | ||||
|                     } | ||||
|                     input += new_channels; | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|         output += output_linesize; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | ||||
| { | ||||
|     ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model; | ||||
|     InputParams* input_params; | ||||
|     int cur_width, cur_height; | ||||
|     int cur_width, cur_height, cur_channels; | ||||
|     int32_t layer; | ||||
|     InputParams* input_params; | ||||
|     ConvolutionalParams* conv_params; | ||||
|     DepthToSpaceParams* depth_to_space_params; | ||||
| 
 | ||||
|     if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){ | ||||
|         return DNN_ERROR; | ||||
| @ -334,6 +442,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | ||||
|         input_params = (InputParams*)network->layers[0].params; | ||||
|         cur_width = input_params->width; | ||||
|         cur_height = input_params->height; | ||||
|         cur_channels = input_params->channels; | ||||
|     } | ||||
| 
 | ||||
|     for (layer = 1; layer < network->layers_num; ++layer){ | ||||
| @ -342,7 +451,17 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | ||||
|         } | ||||
|         switch (network->layers[layer].type){ | ||||
|         case CONV: | ||||
|             convolve(network->layers[layer - 1].output, network->layers[layer].output, (ConvolutionalParams*)network->layers[layer].params, cur_width, cur_height); | ||||
|             conv_params = (ConvolutionalParams*)network->layers[layer].params; | ||||
|             convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); | ||||
|             cur_channels = conv_params->output_num; | ||||
|             break; | ||||
|         case DEPTH_TO_SPACE: | ||||
|             depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | ||||
|             depth_to_space(network->layers[layer - 1].output, network->layers[layer].output, | ||||
|                            depth_to_space_params->block_size, cur_width, cur_height, cur_channels); | ||||
|             cur_height *= depth_to_space_params->block_size; | ||||
|             cur_width *= depth_to_space_params->block_size; | ||||
|             cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size; | ||||
|             break; | ||||
|         case INPUT: | ||||
|             return DNN_ERROR; | ||||
| @ -362,19 +481,13 @@ void ff_dnn_free_model_native(DNNModel** model) | ||||
|     { | ||||
|         network = (ConvolutionalNetwork*)(*model)->model; | ||||
|         for (layer = 0; layer < network->layers_num; ++layer){ | ||||
|             switch (network->layers[layer].type){ | ||||
|             case CONV: | ||||
|                 if (layer < network->layers_num - 1){ | ||||
|                     av_freep(&network->layers[layer].output); | ||||
|                 } | ||||
|             av_freep(&network->layers[layer].output); | ||||
|             if (network->layers[layer].type == CONV){ | ||||
|                 conv_params = (ConvolutionalParams*)network->layers[layer].params; | ||||
|                 av_freep(&conv_params->kernel); | ||||
|                 av_freep(&conv_params->biases); | ||||
|                 av_freep(&conv_params); | ||||
|                 break; | ||||
|             case INPUT: | ||||
|                 av_freep(&network->layers[layer].params); | ||||
|             } | ||||
|             av_freep(&network->layers[layer].params); | ||||
|         } | ||||
|         av_freep(network); | ||||
|         av_freep(model); | ||||
|  | ||||
| @ -25,6 +25,7 @@ | ||||
| 
 | ||||
| #include "dnn_backend_tf.h" | ||||
| #include "dnn_srcnn.h" | ||||
| #include "dnn_espcn.h" | ||||
| #include "libavformat/avio.h" | ||||
| 
 | ||||
| #include <tensorflow/c/c_api.h> | ||||
| @ -35,9 +36,7 @@ typedef struct TFModel{ | ||||
|     TF_Status* status; | ||||
|     TF_Output input, output; | ||||
|     TF_Tensor* input_tensor; | ||||
|     TF_Tensor* output_tensor; | ||||
|     const DNNData* input_data; | ||||
|     const DNNData* output_data; | ||||
|     DNNData* output_data; | ||||
| } TFModel; | ||||
| 
 | ||||
| static void free_buffer(void* data, size_t length) | ||||
| @ -78,13 +77,13 @@ static TF_Buffer* read_graph(const char* model_filename) | ||||
|     return graph_buf; | ||||
| } | ||||
| 
 | ||||
| static DNNReturnType set_input_output_tf(void* model, const DNNData* input, const DNNData* output) | ||||
| static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output) | ||||
| { | ||||
|     TFModel* tf_model = (TFModel*)model; | ||||
|     int64_t input_dims[] = {1, input->height, input->width, input->channels}; | ||||
|     int64_t output_dims[] = {1, output->height, output->width, output->channels}; | ||||
|     TF_SessionOptions* sess_opts; | ||||
|     const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); | ||||
|     TF_Tensor* output_tensor; | ||||
| 
 | ||||
|     // Input operation should be named 'x'
 | ||||
|     tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); | ||||
| @ -100,6 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | ||||
|     if (!tf_model->input_tensor){ | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     input->data = (float*)TF_TensorData(tf_model->input_tensor); | ||||
| 
 | ||||
|     // Output operation should be named 'y'
 | ||||
|     tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); | ||||
| @ -107,17 +107,6 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     tf_model->output.index = 0; | ||||
|     if (tf_model->output_tensor){ | ||||
|         TF_DeleteTensor(tf_model->output_tensor); | ||||
|     } | ||||
|     tf_model->output_tensor = TF_AllocateTensor(TF_FLOAT, output_dims, 4, | ||||
|                                                 output_dims[1] * output_dims[2] * output_dims[3] * sizeof(float)); | ||||
|     if (!tf_model->output_tensor){ | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
| 
 | ||||
|     tf_model->input_data = input; | ||||
|     tf_model->output_data = output; | ||||
| 
 | ||||
|     if (tf_model->session){ | ||||
|         TF_CloseSession(tf_model->session, tf_model->status); | ||||
| @ -144,6 +133,26 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     // Execute network to get output height, width and number of channels
 | ||||
|     TF_SessionRun(tf_model->session, NULL, | ||||
|                   &tf_model->input, &tf_model->input_tensor, 1, | ||||
|                   &tf_model->output, &output_tensor, 1, | ||||
|                   NULL, 0, NULL, tf_model->status); | ||||
|     if (TF_GetCode(tf_model->status) != TF_OK){ | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     else{ | ||||
|         output->height = TF_Dim(output_tensor, 1); | ||||
|         output->width = TF_Dim(output_tensor, 2); | ||||
|         output->channels = TF_Dim(output_tensor, 3); | ||||
|         output->data = av_malloc(output->height * output->width * output->channels * sizeof(float)); | ||||
|         if (!output->data){ | ||||
|             return DNN_ERROR; | ||||
|         } | ||||
|         tf_model->output_data = output; | ||||
|         TF_DeleteTensor(output_tensor); | ||||
|     } | ||||
| 
 | ||||
|     return DNN_SUCCESS; | ||||
| } | ||||
| 
 | ||||
| @ -166,7 +175,7 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename) | ||||
|     } | ||||
|     tf_model->session = NULL; | ||||
|     tf_model->input_tensor = NULL; | ||||
|     tf_model->output_tensor = NULL; | ||||
|     tf_model->output_data = NULL; | ||||
| 
 | ||||
|     graph_def = read_graph(model_filename); | ||||
|     if (!graph_def){ | ||||
| @ -215,6 +224,17 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | ||||
|         graph_def->length = srcnn_tf_size; | ||||
|         graph_def->data_deallocator = free_buffer; | ||||
|         break; | ||||
|     case DNN_ESPCN: | ||||
|         graph_data = av_malloc(espcn_tf_size); | ||||
|         if (!graph_data){ | ||||
|             TF_DeleteBuffer(graph_def); | ||||
|             return NULL; | ||||
|         } | ||||
|         memcpy(graph_data, espcn_tf_model, espcn_tf_size); | ||||
|         graph_def->data = (void*)graph_data; | ||||
|         graph_def->length = espcn_tf_size; | ||||
|         graph_def->data_deallocator = free_buffer; | ||||
|         break; | ||||
|     default: | ||||
|         TF_DeleteBuffer(graph_def); | ||||
|         return NULL; | ||||
| @ -234,7 +254,7 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | ||||
|     } | ||||
|     tf_model->session = NULL; | ||||
|     tf_model->input_tensor = NULL; | ||||
|     tf_model->output_tensor = NULL; | ||||
|     tf_model->output_data = NULL; | ||||
| 
 | ||||
|     tf_model->graph = TF_NewGraph(); | ||||
|     tf_model->status = TF_NewStatus(); | ||||
| @ -259,23 +279,21 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | ||||
| DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) | ||||
| { | ||||
|     TFModel* tf_model = (TFModel*)model->model; | ||||
| 
 | ||||
|     memcpy(TF_TensorData(tf_model->input_tensor), tf_model->input_data->data, | ||||
|            tf_model->input_data->height * tf_model->input_data->width * | ||||
|            tf_model->input_data->channels * sizeof(float)); | ||||
|     TF_Tensor* output_tensor; | ||||
| 
 | ||||
|     TF_SessionRun(tf_model->session, NULL, | ||||
|                   &tf_model->input, &tf_model->input_tensor, 1, | ||||
|                   &tf_model->output, &tf_model->output_tensor, 1, | ||||
|                   &tf_model->output, &output_tensor, 1, | ||||
|                   NULL, 0, NULL, tf_model->status); | ||||
| 
 | ||||
|     if (TF_GetCode(tf_model->status) != TF_OK){ | ||||
|         return DNN_ERROR; | ||||
|     } | ||||
|     else{ | ||||
|         memcpy(tf_model->output_data->data, TF_TensorData(tf_model->output_tensor), | ||||
|            tf_model->output_data->height * tf_model->output_data->width * | ||||
|            tf_model->output_data->channels * sizeof(float)); | ||||
|         memcpy(tf_model->output_data->data, TF_TensorData(output_tensor), | ||||
|                tf_model->output_data->height * tf_model->output_data->width * | ||||
|                tf_model->output_data->channels * sizeof(float)); | ||||
|         TF_DeleteTensor(output_tensor); | ||||
| 
 | ||||
|         return DNN_SUCCESS; | ||||
|     } | ||||
| @ -300,9 +318,7 @@ void ff_dnn_free_model_tf(DNNModel** model) | ||||
|         if (tf_model->input_tensor){ | ||||
|             TF_DeleteTensor(tf_model->input_tensor); | ||||
|         } | ||||
|         if (tf_model->output_tensor){ | ||||
|             TF_DeleteTensor(tf_model->output_tensor); | ||||
|         } | ||||
|         av_freep(&tf_model->output_data->data); | ||||
|         av_freep(&tf_model); | ||||
|         av_freep(model); | ||||
|     } | ||||
|  | ||||
							
								
								
									
										12637
									
								
								libavfilter/dnn_espcn.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12637
									
								
								libavfilter/dnn_espcn.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -30,7 +30,7 @@ typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType; | ||||
| 
 | ||||
| typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; | ||||
| 
 | ||||
| typedef enum {DNN_SRCNN} DNNDefaultModel; | ||||
| typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel; | ||||
| 
 | ||||
| typedef struct DNNData{ | ||||
|     float* data; | ||||
| @ -42,7 +42,7 @@ typedef struct DNNModel{ | ||||
|     void* model; | ||||
|     // Sets model input and output, while allocating additional memory for intermediate calculations.
 | ||||
|     // Should be called at least once before model execution.
 | ||||
|     DNNReturnType (*set_input_output)(void* model, const DNNData* input, const DNNData* output); | ||||
|     DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output); | ||||
| } DNNModel; | ||||
| 
 | ||||
| // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
 | ||||
|  | ||||
| @ -20,13 +20,13 @@ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file | ||||
|  * Default cnn weights for x2 upsampling with srcnn filter. | ||||
|  * Default cnn weights for x2 upsampling with srcnn model. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef AVFILTER_DNN_SRCNN_H | ||||
| #define AVFILTER_DNN_SRCNN_H | ||||
| 
 | ||||
| static const float conv1_kernel[] = { | ||||
| static const float srcnn_conv1_kernel[] = { | ||||
|     -0.08866338f,     0.055409566f,     0.037196506f,     -0.11961404f, | ||||
|     -0.12341991f,     0.29963422f,      -0.0911817f,      -0.00013613555f, | ||||
|     -0.049023595f,    0.038421184f,     -0.077267796f,    0.027273094f, | ||||
| @ -1325,7 +1325,7 @@ static const float conv1_kernel[] = { | ||||
|     -0.013759381f,    0.026358005f,     0.088238746f,     0.082134426f | ||||
| }; | ||||
| 
 | ||||
| static const float conv1_biases[] = { | ||||
| static const float srcnn_conv1_biases[] = { | ||||
|     -0.016606892f,    -0.011107335f,    -0.0048309686f,   -0.04867378f, | ||||
|     -0.030040957f,    -0.07297248f,     -0.019458665f,    -0.009738028f, | ||||
|     0.6951231f,       -0.07369442f,     -0.01354204f,     0.010336088f, | ||||
| @ -1344,7 +1344,7 @@ static const float conv1_biases[] = { | ||||
|     0.054407462f,     -0.08068252f,     -0.009446503f,    -0.04663234f | ||||
| }; | ||||
| 
 | ||||
| static const float conv2_kernel[] = { | ||||
| static const float srcnn_conv2_kernel[] = { | ||||
|     -0.24004751f,     0.1037138f,       0.11173403f,      0.04352092f, | ||||
|     -0.23728481f,     0.12153747f,      -0.23676059f,     -0.28548065f, | ||||
|     -0.612738f,       -0.12218937f,     -0.06005159f,     0.1850652f, | ||||
| @ -1859,7 +1859,7 @@ static const float conv2_kernel[] = { | ||||
|     0.11089696f,      -0.08941251f,     -0.3529318f,      0.0654588f | ||||
| }; | ||||
| 
 | ||||
| static const float conv2_biases[] = { | ||||
| static const float srcnn_conv2_biases[] = { | ||||
|     0.12326373f,      0.13270757f,      0.07082674f,      0.051456157f, | ||||
|     0.058445618f,     0.13153197f,      0.0809729f,       0.10153213f, | ||||
|     0.055915363f,     0.05228166f,      -0.11212896f,     0.07462141f, | ||||
| @ -1870,7 +1870,7 @@ static const float conv2_biases[] = { | ||||
|     -0.086404406f,    0.06046943f,      -0.1733751f,      0.2654999f | ||||
| }; | ||||
| 
 | ||||
| static const float conv3_kernel[] = { | ||||
| static const float srcnn_conv3_kernel[] = { | ||||
|     -0.01733648f,     0.01492609f,      0.019393086f,     -0.004445322f, | ||||
|     0.026939709f,     0.00038831023f,   0.004221528f,     0.0050745453f, | ||||
|     0.0129861f,       0.008007169f,     0.008950762f,     0.005279691f, | ||||
| @ -2073,7 +2073,7 @@ static const float conv3_kernel[] = { | ||||
|     0.012931146f,     0.0046948805f,    0.013098622f,     -0.015422701f | ||||
| }; | ||||
| 
 | ||||
| static const float conv3_biases[] = { | ||||
| static const float srcnn_conv3_biases[] = { | ||||
|     0.05037664f | ||||
| }; | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										354
									
								
								libavfilter/vf_sr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										354
									
								
								libavfilter/vf_sr.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,354 @@ | ||||
| /*
 | ||||
|  * Copyright (c) 2018 Sergey Lavrushkin | ||||
|  * | ||||
|  * This file is part of FFmpeg. | ||||
|  * | ||||
|  * FFmpeg is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2.1 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * FFmpeg is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with FFmpeg; if not, write to the Free Software | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||
|  */ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file | ||||
|  * Filter implementing image super-resolution using deep convolutional networks. | ||||
|  * https://arxiv.org/abs/1501.00092
 | ||||
|  * https://arxiv.org/abs/1609.05158
 | ||||
|  */ | ||||
| 
 | ||||
| #include "avfilter.h" | ||||
| #include "formats.h" | ||||
| #include "internal.h" | ||||
| #include "libavutil/opt.h" | ||||
| #include "libavformat/avio.h" | ||||
| #include "libswscale/swscale.h" | ||||
| #include "dnn_interface.h" | ||||
| 
 | ||||
| typedef enum {SRCNN, ESPCN} SRModel; | ||||
| 
 | ||||
| typedef struct SRContext { | ||||
|     const AVClass *class; | ||||
| 
 | ||||
|     SRModel model_type; | ||||
|     char* model_filename; | ||||
|     DNNBackendType backend_type; | ||||
|     DNNModule* dnn_module; | ||||
|     DNNModel* model; | ||||
|     DNNData input, output; | ||||
|     int scale_factor; | ||||
|     struct SwsContext* sws_context; | ||||
|     int sws_slice_h; | ||||
| } SRContext; | ||||
| 
 | ||||
| #define OFFSET(x) offsetof(SRContext, x) | ||||
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM | ||||
| static const AVOption sr_options[] = { | ||||
|     { "model", "specifies what DNN model to use", OFFSET(model_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "model_type" }, | ||||
|     { "srcnn", "Super-Resolution Convolutional Neural Network model (scale factor should be specified for custom SRCNN model)", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "model_type" }, | ||||
|     { "espcn", "Efficient Sub-Pixel Convolutional Neural Network model", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "model_type" }, | ||||
|     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, | ||||
|     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, | ||||
| #if (CONFIG_LIBTENSORFLOW == 1) | ||||
|     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, | ||||
| #endif | ||||
|     {"scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS}, | ||||
|     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| AVFILTER_DEFINE_CLASS(sr); | ||||
| 
 | ||||
| static av_cold int init(AVFilterContext* context) | ||||
| { | ||||
|     SRContext* sr_context = context->priv; | ||||
| 
 | ||||
|     sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type); | ||||
|     if (!sr_context->dnn_module){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     if (!sr_context->model_filename){ | ||||
|         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); | ||||
|         sr_context->scale_factor = 2; | ||||
|         switch (sr_context->model_type){ | ||||
|         case SRCNN: | ||||
|             sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_SRCNN); | ||||
|             break; | ||||
|         case ESPCN: | ||||
|             sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_ESPCN); | ||||
|         } | ||||
|     } | ||||
|     else{ | ||||
|         sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename); | ||||
|     } | ||||
|     if (!sr_context->model){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int query_formats(AVFilterContext* context) | ||||
| { | ||||
|     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, | ||||
|                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, | ||||
|                                                 AV_PIX_FMT_NONE}; | ||||
|     AVFilterFormats* formats_list; | ||||
| 
 | ||||
|     formats_list = ff_make_format_list(pixel_formats); | ||||
|     if (!formats_list){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not create formats list\n"); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     return ff_set_common_formats(context, formats_list); | ||||
| } | ||||
| 
 | ||||
| static int config_props(AVFilterLink* inlink) | ||||
| { | ||||
|     AVFilterContext* context = inlink->dst; | ||||
|     SRContext* sr_context = context->priv; | ||||
|     AVFilterLink* outlink = context->outputs[0]; | ||||
|     DNNReturnType result; | ||||
|     int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w; | ||||
| 
 | ||||
|     switch (sr_context->model_type){ | ||||
|     case SRCNN: | ||||
|         sr_context->input.width = inlink->w * sr_context->scale_factor; | ||||
|         sr_context->input.height = inlink->h * sr_context->scale_factor; | ||||
|         break; | ||||
|     case ESPCN: | ||||
|         sr_context->input.width = inlink->w; | ||||
|         sr_context->input.height = inlink->h; | ||||
|     } | ||||
|     sr_context->input.channels = 1; | ||||
| 
 | ||||
|     result = (sr_context->model->set_input_output)(sr_context->model->model, &sr_context->input, &sr_context->output); | ||||
|     if (result != DNN_SUCCESS){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
|     else{ | ||||
|         outlink->h = sr_context->output.height; | ||||
|         outlink->w = sr_context->output.width; | ||||
|         switch (sr_context->model_type){ | ||||
|         case SRCNN: | ||||
|             sr_context->sws_context = sws_getContext(inlink->w, inlink->h, inlink->format, | ||||
|                                                      outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL); | ||||
|             if (!sr_context->sws_context){ | ||||
|                 av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | ||||
|                 return AVERROR(ENOMEM); | ||||
|             } | ||||
|             sr_context->sws_slice_h = inlink->h; | ||||
|             break; | ||||
|         case ESPCN: | ||||
|             if (inlink->format == AV_PIX_FMT_GRAY8){ | ||||
|                 sr_context->sws_context = NULL; | ||||
|             } | ||||
|             else{ | ||||
|                 sws_src_h = sr_context->input.height; | ||||
|                 sws_src_w = sr_context->input.width; | ||||
|                 sws_dst_h = sr_context->output.height; | ||||
|                 sws_dst_w = sr_context->output.width; | ||||
| 
 | ||||
|                 switch (inlink->format){ | ||||
|                 case AV_PIX_FMT_YUV420P: | ||||
|                     sws_src_h = (sws_src_h >> 1) + (sws_src_h % 2 != 0 ? 1 : 0); | ||||
|                     sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | ||||
|                     sws_dst_h = (sws_dst_h >> 1) + (sws_dst_h % 2 != 0 ? 1 : 0); | ||||
|                     sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | ||||
|                     break; | ||||
|                 case AV_PIX_FMT_YUV422P: | ||||
|                     sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | ||||
|                     sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | ||||
|                     break; | ||||
|                 case AV_PIX_FMT_YUV444P: | ||||
|                     break; | ||||
|                 case AV_PIX_FMT_YUV410P: | ||||
|                     sws_src_h = (sws_src_h >> 2) + (sws_src_h % 4 != 0 ? 1 : 0); | ||||
|                     sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | ||||
|                     sws_dst_h = (sws_dst_h >> 2) + (sws_dst_h % 4 != 0 ? 1 : 0); | ||||
|                     sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | ||||
|                     break; | ||||
|                 case AV_PIX_FMT_YUV411P: | ||||
|                     sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | ||||
|                     sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | ||||
|                     break; | ||||
|                 default: | ||||
|                     av_log(context, AV_LOG_ERROR, "could not create SwsContext for input pixel format"); | ||||
|                     return AVERROR(EIO); | ||||
|                 } | ||||
|                 sr_context->sws_context = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8, | ||||
|                                                          sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL); | ||||
|                 if (!sr_context->sws_context){ | ||||
|                     av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | ||||
|                     return AVERROR(ENOMEM); | ||||
|                 } | ||||
|                 sr_context->sws_slice_h = sws_src_h; | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         return 0; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| typedef struct ThreadData{ | ||||
|     uint8_t* data; | ||||
|     int data_linesize, height, width; | ||||
| } ThreadData; | ||||
| 
 | ||||
| static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||
| { | ||||
|     SRContext* sr_context = context->priv; | ||||
|     const ThreadData* td = arg; | ||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||
|     const uint8_t* src = td->data + slice_start * td->data_linesize; | ||||
|     float* dst = sr_context->input.data + slice_start * td->width; | ||||
|     int y, x; | ||||
| 
 | ||||
|     for (y = slice_start; y < slice_end; ++y){ | ||||
|         for (x = 0; x < td->width; ++x){ | ||||
|             dst[x] = (float)src[x] / 255.0f; | ||||
|         } | ||||
|         src += td->data_linesize; | ||||
|         dst += td->width; | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||
| { | ||||
|     SRContext* sr_context = context->priv; | ||||
|     const ThreadData* td = arg; | ||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||
|     const float* src = sr_context->output.data + slice_start * td->width; | ||||
|     uint8_t* dst = td->data + slice_start * td->data_linesize; | ||||
|     int y, x; | ||||
| 
 | ||||
|     for (y = slice_start; y < slice_end; ++y){ | ||||
|         for (x = 0; x < td->width; ++x){ | ||||
|             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); | ||||
|         } | ||||
|         src += td->width; | ||||
|         dst += td->data_linesize; | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int filter_frame(AVFilterLink* inlink, AVFrame* in) | ||||
| { | ||||
|     AVFilterContext* context = inlink->dst; | ||||
|     SRContext* sr_context = context->priv; | ||||
|     AVFilterLink* outlink = context->outputs[0]; | ||||
|     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | ||||
|     ThreadData td; | ||||
|     int nb_threads; | ||||
|     DNNReturnType dnn_result; | ||||
| 
 | ||||
|     if (!out){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); | ||||
|         av_frame_free(&in); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     av_frame_copy_props(out, in); | ||||
|     out->height = sr_context->output.height; | ||||
|     out->width = sr_context->output.width; | ||||
|     switch (sr_context->model_type){ | ||||
|     case SRCNN: | ||||
|         sws_scale(sr_context->sws_context, in->data, in->linesize, | ||||
|                   0, sr_context->sws_slice_h, out->data, out->linesize); | ||||
|         td.data = out->data[0]; | ||||
|         td.data_linesize = out->linesize[0]; | ||||
|         td.height = out->height; | ||||
|         td.width = out->width; | ||||
|         break; | ||||
|     case ESPCN: | ||||
|         if (sr_context->sws_context){ | ||||
|             sws_scale(sr_context->sws_context, in->data + 1, in->linesize + 1, | ||||
|                       0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1); | ||||
|             sws_scale(sr_context->sws_context, in->data + 2, in->linesize + 2, | ||||
|                       0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2); | ||||
|         } | ||||
|         td.data = in->data[0]; | ||||
|         td.data_linesize = in->linesize[0]; | ||||
|         td.height = in->height; | ||||
|         td.width = in->width; | ||||
|     } | ||||
| 
 | ||||
|     nb_threads = ff_filter_get_nb_threads(context); | ||||
|     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); | ||||
|     av_frame_free(&in); | ||||
| 
 | ||||
|     dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model); | ||||
|     if (dnn_result != DNN_SUCCESS){ | ||||
|         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
| 
 | ||||
|     td.data = out->data[0]; | ||||
|     td.data_linesize = out->linesize[0]; | ||||
|     td.height = out->height; | ||||
|     td.width = out->width; | ||||
|     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); | ||||
| 
 | ||||
|     return ff_filter_frame(outlink, out); | ||||
| } | ||||
| 
 | ||||
| static av_cold void uninit(AVFilterContext* context) | ||||
| { | ||||
|     SRContext* sr_context = context->priv; | ||||
| 
 | ||||
|     if (sr_context->dnn_module){ | ||||
|         (sr_context->dnn_module->free_model)(&sr_context->model); | ||||
|         av_freep(&sr_context->dnn_module); | ||||
|     } | ||||
| 
 | ||||
|     if (sr_context->sws_context){ | ||||
|         sws_freeContext(sr_context->sws_context); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| static const AVFilterPad sr_inputs[] = { | ||||
|     { | ||||
|         .name         = "default", | ||||
|         .type         = AVMEDIA_TYPE_VIDEO, | ||||
|         .config_props = config_props, | ||||
|         .filter_frame = filter_frame, | ||||
|     }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| static const AVFilterPad sr_outputs[] = { | ||||
|     { | ||||
|         .name = "default", | ||||
|         .type = AVMEDIA_TYPE_VIDEO, | ||||
|     }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| AVFilter ff_vf_sr = { | ||||
|     .name          = "sr", | ||||
|     .description   = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."), | ||||
|     .priv_size     = sizeof(SRContext), | ||||
|     .init          = init, | ||||
|     .uninit        = uninit, | ||||
|     .query_formats = query_formats, | ||||
|     .inputs        = sr_inputs, | ||||
|     .outputs       = sr_outputs, | ||||
|     .priv_class    = &sr_class, | ||||
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | ||||
| }; | ||||
| 
 | ||||
| @ -1,250 +0,0 @@ | ||||
| /*
 | ||||
|  * Copyright (c) 2018 Sergey Lavrushkin | ||||
|  * | ||||
|  * This file is part of FFmpeg. | ||||
|  * | ||||
|  * FFmpeg is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2.1 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * FFmpeg is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with FFmpeg; if not, write to the Free Software | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||
|  */ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file | ||||
|  * Filter implementing image super-resolution using deep convolutional networks. | ||||
|  * https://arxiv.org/abs/1501.00092
 | ||||
|  */ | ||||
| 
 | ||||
| #include "avfilter.h" | ||||
| #include "formats.h" | ||||
| #include "internal.h" | ||||
| #include "libavutil/opt.h" | ||||
| #include "libavformat/avio.h" | ||||
| #include "dnn_interface.h" | ||||
| 
 | ||||
| typedef struct SRCNNContext { | ||||
|     const AVClass *class; | ||||
| 
 | ||||
|     char* model_filename; | ||||
|     float* input_output_buf; | ||||
|     DNNBackendType backend_type; | ||||
|     DNNModule* dnn_module; | ||||
|     DNNModel* model; | ||||
|     DNNData input_output; | ||||
| } SRCNNContext; | ||||
| 
 | ||||
| #define OFFSET(x) offsetof(SRCNNContext, x) | ||||
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM | ||||
| static const AVOption srcnn_options[] = { | ||||
|     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, | ||||
|     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, | ||||
| #if (CONFIG_LIBTENSORFLOW == 1) | ||||
|     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, | ||||
| #endif | ||||
|     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| AVFILTER_DEFINE_CLASS(srcnn); | ||||
| 
 | ||||
| static av_cold int init(AVFilterContext* context) | ||||
| { | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
| 
 | ||||
|     srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type); | ||||
|     if (!srcnn_context->dnn_module){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     if (!srcnn_context->model_filename){ | ||||
|         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); | ||||
|         srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN); | ||||
|     } | ||||
|     else{ | ||||
|         srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename); | ||||
|     } | ||||
|     if (!srcnn_context->model){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int query_formats(AVFilterContext* context) | ||||
| { | ||||
|     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, | ||||
|                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, | ||||
|                                                 AV_PIX_FMT_NONE}; | ||||
|     AVFilterFormats* formats_list; | ||||
| 
 | ||||
|     formats_list = ff_make_format_list(pixel_formats); | ||||
|     if (!formats_list){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not create formats list\n"); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     return ff_set_common_formats(context, formats_list); | ||||
| } | ||||
| 
 | ||||
| static int config_props(AVFilterLink* inlink) | ||||
| { | ||||
|     AVFilterContext* context = inlink->dst; | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
|     DNNReturnType result; | ||||
| 
 | ||||
|     srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float)); | ||||
|     if (!srcnn_context->input_output_buf){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n"); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
| 
 | ||||
|     srcnn_context->input_output.data = srcnn_context->input_output_buf; | ||||
|     srcnn_context->input_output.width = inlink->w; | ||||
|     srcnn_context->input_output.height = inlink->h; | ||||
|     srcnn_context->input_output.channels = 1; | ||||
| 
 | ||||
|     result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output); | ||||
|     if (result != DNN_SUCCESS){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
|     else{ | ||||
|         return 0; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| typedef struct ThreadData{ | ||||
|     uint8_t* out; | ||||
|     int out_linesize, height, width; | ||||
| } ThreadData; | ||||
| 
 | ||||
| static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||
| { | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
|     const ThreadData* td = arg; | ||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||
|     const uint8_t* src = td->out + slice_start * td->out_linesize; | ||||
|     float* dst = srcnn_context->input_output_buf + slice_start * td->width; | ||||
|     int y, x; | ||||
| 
 | ||||
|     for (y = slice_start; y < slice_end; ++y){ | ||||
|         for (x = 0; x < td->width; ++x){ | ||||
|             dst[x] = (float)src[x] / 255.0f; | ||||
|         } | ||||
|         src += td->out_linesize; | ||||
|         dst += td->width; | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | ||||
| { | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
|     const ThreadData* td = arg; | ||||
|     const int slice_start = (td->height *  jobnr     ) / nb_jobs; | ||||
|     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs; | ||||
|     const float* src = srcnn_context->input_output_buf + slice_start * td->width; | ||||
|     uint8_t* dst = td->out + slice_start * td->out_linesize; | ||||
|     int y, x; | ||||
| 
 | ||||
|     for (y = slice_start; y < slice_end; ++y){ | ||||
|         for (x = 0; x < td->width; ++x){ | ||||
|             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); | ||||
|         } | ||||
|         src += td->width; | ||||
|         dst += td->out_linesize; | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| } | ||||
| 
 | ||||
| static int filter_frame(AVFilterLink* inlink, AVFrame* in) | ||||
| { | ||||
|     AVFilterContext* context = inlink->dst; | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
|     AVFilterLink* outlink = context->outputs[0]; | ||||
|     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | ||||
|     ThreadData td; | ||||
|     int nb_threads; | ||||
|     DNNReturnType dnn_result; | ||||
| 
 | ||||
|     if (!out){ | ||||
|         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); | ||||
|         av_frame_free(&in); | ||||
|         return AVERROR(ENOMEM); | ||||
|     } | ||||
|     av_frame_copy_props(out, in); | ||||
|     av_frame_copy(out, in); | ||||
|     av_frame_free(&in); | ||||
|     td.out = out->data[0]; | ||||
|     td.out_linesize = out->linesize[0]; | ||||
|     td.height = out->height; | ||||
|     td.width = out->width; | ||||
| 
 | ||||
|     nb_threads = ff_filter_get_nb_threads(context); | ||||
|     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); | ||||
| 
 | ||||
|     dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model); | ||||
|     if (dnn_result != DNN_SUCCESS){ | ||||
|         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); | ||||
|         return AVERROR(EIO); | ||||
|     } | ||||
| 
 | ||||
|     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); | ||||
| 
 | ||||
|     return ff_filter_frame(outlink, out); | ||||
| } | ||||
| 
 | ||||
| static av_cold void uninit(AVFilterContext* context) | ||||
| { | ||||
|     SRCNNContext* srcnn_context = context->priv; | ||||
| 
 | ||||
|     if (srcnn_context->dnn_module){ | ||||
|         (srcnn_context->dnn_module->free_model)(&srcnn_context->model); | ||||
|         av_freep(&srcnn_context->dnn_module); | ||||
|     } | ||||
|     av_freep(&srcnn_context->input_output_buf); | ||||
| } | ||||
| 
 | ||||
| static const AVFilterPad srcnn_inputs[] = { | ||||
|     { | ||||
|         .name         = "default", | ||||
|         .type         = AVMEDIA_TYPE_VIDEO, | ||||
|         .config_props = config_props, | ||||
|         .filter_frame = filter_frame, | ||||
|     }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| static const AVFilterPad srcnn_outputs[] = { | ||||
|     { | ||||
|         .name = "default", | ||||
|         .type = AVMEDIA_TYPE_VIDEO, | ||||
|     }, | ||||
|     { NULL } | ||||
| }; | ||||
| 
 | ||||
| AVFilter ff_vf_srcnn = { | ||||
|     .name          = "srcnn", | ||||
|     .description   = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."), | ||||
|     .priv_size     = sizeof(SRCNNContext), | ||||
|     .init          = init, | ||||
|     .uninit        = uninit, | ||||
|     .query_formats = query_formats, | ||||
|     .inputs        = srcnn_inputs, | ||||
|     .outputs       = srcnn_outputs, | ||||
|     .priv_class    = &srcnn_class, | ||||
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | ||||
| }; | ||||
| 
 | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user